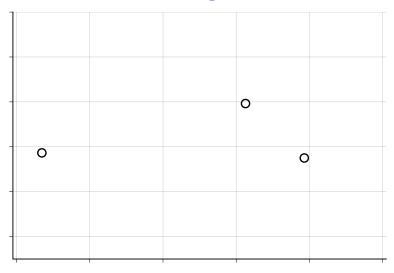
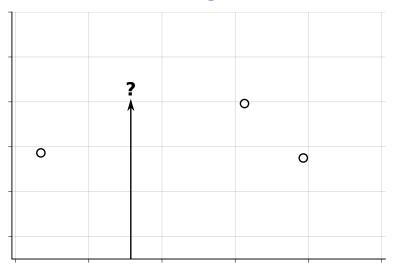
A tutorial on Gaussian Processes

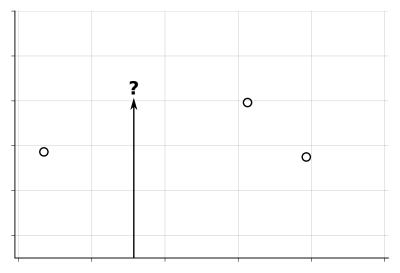
Daniel Hernández-Lobato

Computer Science Department Universidad Autónoma de Madrid

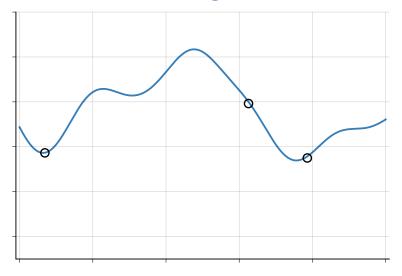
http://dhnzl.org, daniel.hernandez@uam.es



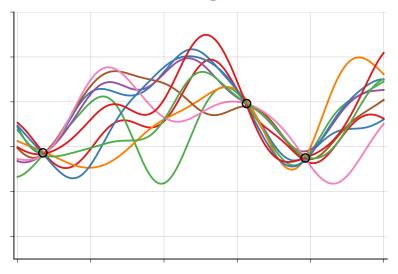




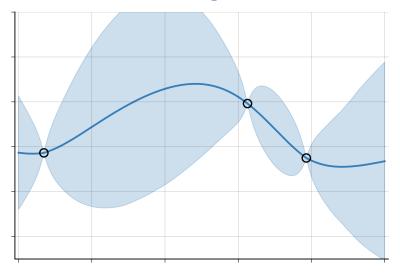
We have to specify a model that may depend on parameters W.



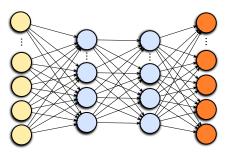
Given W the model will output a prediction.



Many values for W can be compatible with the data!

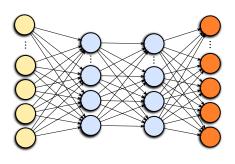


We are interested in a predictive distribution!



$$h_j(\mathbf{x}) = \tanh\left(\sum_{i=1}^I x_i w_{ji}\right)$$

$$f(\mathbf{x}) = \sum_{j=1}^{H} v_j h_j(\mathbf{x})$$

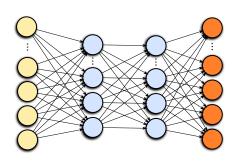


$$h_j(\mathbf{x}) = \tanh\left(\sum_{i=1}^I x_i w_{ji}\right)$$

$$f(\mathbf{x}) = \sum_{j=1}^{H} v_j h_j(\mathbf{x})$$

The posterior distribution of **W** is:

$$p(\mathbf{W}|\mathbf{y},\mathbf{X}) = \frac{p(\mathbf{y}|\mathbf{W},\mathbf{X})p(\mathbf{W})}{p(\mathbf{y}|\mathbf{X})}, \qquad p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|\mathbf{W},\mathbf{X})p(\mathbf{W})d\mathbf{W},$$



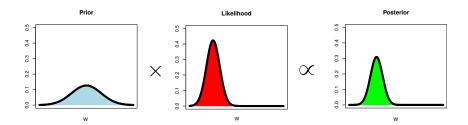
$$h_j(\mathbf{x}) = \tanh\left(\sum_{i=1}^I x_i w_{ji}\right)$$

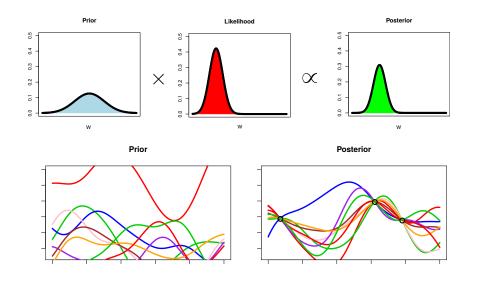
$$f(\mathbf{x}) = \sum_{j=1}^{H} v_j h_j(\mathbf{x})$$

The posterior distribution of **W** is:

$$p(\mathbf{W}|\mathbf{y},\mathbf{X}) = \frac{p(\mathbf{y}|\mathbf{W},\mathbf{X})p(\mathbf{W})}{p(\mathbf{y}|\mathbf{X})}, \qquad p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|\mathbf{W},\mathbf{X})p(\mathbf{W})d\mathbf{W},$$

The posterior captures the values of W compatible with y and X.





The predictive distribution y^* is computed using the posterior:

$$p(y^{\star}|\mathbf{y},\mathbf{X}) = \int p(y^{\star}|\mathbf{W},\mathbf{x}^{\star})p(\mathbf{W}|\mathbf{y},\mathbf{X})d\mathbf{W}.$$

The predictive distribution y^* is computed using the posterior:

$$p(y^{\star}|\mathbf{y},\mathbf{X}) = \int p(y^{\star}|\mathbf{W},\mathbf{x}^{\star})p(\mathbf{W}|\mathbf{y},\mathbf{X})d\mathbf{W}$$
.

Takes into account all potential values for W!

The predictive distribution y^* is computed using the posterior:

$$p(y^{\star}|\mathbf{y},\mathbf{X}) = \int p(y^{\star}|\mathbf{W},\mathbf{x}^{\star})p(\mathbf{W}|\mathbf{y},\mathbf{X})d\mathbf{W}$$
.

Takes into account all potential values for W!

Challenges:

The predictive distribution y^* is computed using the posterior:

$$p(y^{\star}|\mathbf{y},\mathbf{X}) = \int p(y^{\star}|\mathbf{W},\mathbf{x}^{\star})p(\mathbf{W}|\mathbf{y},\mathbf{X})d\mathbf{W}$$
.

Takes into account all potential values for W!

Challenges:

• p(y|X) cannot be computed!

The predictive distribution y^* is computed using the posterior:

$$p(y^{\star}|\mathbf{y},\mathbf{X}) = \int p(y^{\star}|\mathbf{W},\mathbf{x}^{\star})p(\mathbf{W}|\mathbf{y},\mathbf{X})d\mathbf{W}$$
.

Takes into account all potential values for W!

Challenges:

- p(y|X) cannot be computed!
- The model should be non-parametric (the world is complex)!.

The predictive distribution y^* is computed using the posterior:

$$p(y^{\star}|\mathbf{y},\mathbf{X}) = \int p(y^{\star}|\mathbf{W},\mathbf{x}^{\star})p(\mathbf{W}|\mathbf{y},\mathbf{X})d\mathbf{W}$$
.

Takes into account all potential values for W!

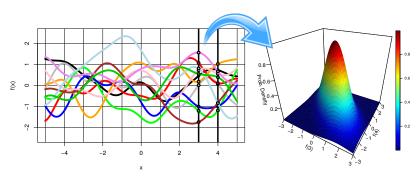
Challenges:

- p(y|X) cannot be computed!
- The model should be non-parametric (the world is complex)!.

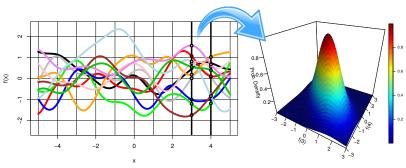
Solved by setting $p(\mathbf{W}) = \prod_{ii} \mathcal{N}(w_{ii}|0, \sigma^2 H^{-1})$ and letting $H \to \infty$!

Distribution over functions $f(\cdot)$ so that for any finite $\{x_i\}_{i=1}^N$, $(f(x_1), \dots, f(x_N))^T$ follows an N-dimensional Gaussian distribution.

Distribution over functions $f(\cdot)$ so that for any finite $\{x_i\}_{i=1}^N$, $(f(x_1), \dots, f(x_N))^T$ follows an N-dimensional Gaussian distribution.

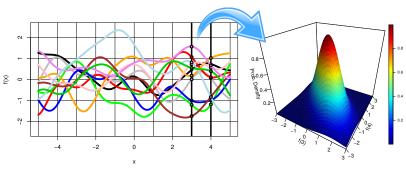


Distribution over functions $f(\cdot)$ so that for any finite $\{\mathbf{x}_i\}_{i=1}^N$, $(f(\mathbf{x}_1), \dots, f(\mathbf{x}_N))^\mathsf{T}$ follows an N-dimensional Gaussian distribution.



When $H \to \infty$, $(f(\mathbf{x}_1), \dots, f(\mathbf{x}_N))^{\mathsf{T}}$ follows an *N*-dimensional Gaussian where $\mathbb{E}[f(\mathbf{x}_i)f(\mathbf{x}_k)] = \sigma^2\mathbb{E}[h_j(\mathbf{x}_i)h_j(\mathbf{x}_k)]$ by the **central limit theorem**.

Distribution over functions $f(\cdot)$ so that for any finite $\{\mathbf{x}_i\}_{i=1}^N$, $(f(\mathbf{x}_1), \dots, f(\mathbf{x}_N))^\mathsf{T}$ follows an N-dimensional Gaussian distribution.

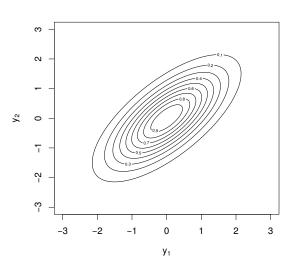


When $H \to \infty$, $(f(\mathbf{x}_1), \dots, f(\mathbf{x}_N))^{\mathsf{T}}$ follows an *N*-dimensional Gaussian where $\mathbb{E}[f(\mathbf{x}_i)f(\mathbf{x}_k)] = \sigma^2\mathbb{E}[h_j(\mathbf{x}_i)h_j(\mathbf{x}_k)]$ by the **central limit theorem**.

Due to Gaussian form, there are closed-form solutions for many useful questions about finite data.

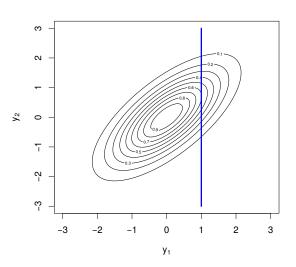
$$p(\mathbf{y}|\mathbf{\Sigma}) \propto \exp\left\{-0.5\mathbf{y}^\mathsf{T}\mathbf{\Sigma}^{-1}\mathbf{y}\right\}$$

$$\Sigma = \begin{bmatrix} 1.0 & 0.7 \\ 0.7 & 1.0 \end{bmatrix}.$$

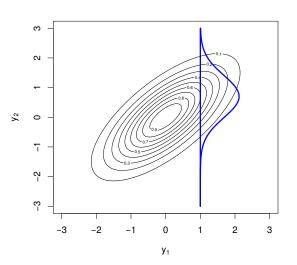


$$p(\mathbf{y}|\mathbf{\Sigma}) \propto \exp\left\{-0.5\mathbf{y}^\mathsf{T}\mathbf{\Sigma}^{-1}\mathbf{y}\right\}$$

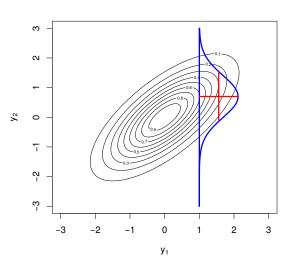
$$\Sigma = \begin{bmatrix} 1.0 & 0.7 \\ 0.7 & 1.0 \end{bmatrix}.$$



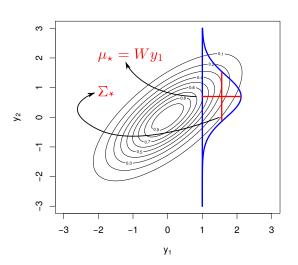
$$p(y_2|y_1, \mathbf{\Sigma}) \propto \exp\left\{-0.5(y_2 - \mu_{\star})\mathbf{\Sigma}_{\star}^{-1}(y_2 - \mu_{\star})\right\} \qquad \mathbf{\Sigma} = \begin{bmatrix} 1.0 & 0.7 \\ 0.7 & 1.0 \end{bmatrix}.$$

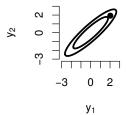


$$p(y_2|y_1, \Sigma) \propto \exp\left\{-0.5(y_2 - \mu_{\star})\Sigma_{\star}^{-1}(y_2 - \mu_{\star})\right\} \qquad \Sigma = \begin{bmatrix} 1.0 & 0.7 \\ 0.7 & 1.0 \end{bmatrix}.$$

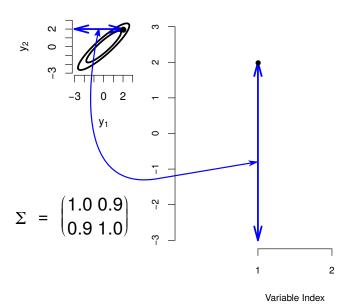


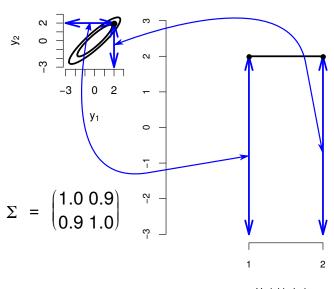
$$p(y_2|y_1, \mathbf{\Sigma}) \propto \exp\left\{-0.5(y_2 - \mu_{\star})\mathbf{\Sigma}_{\star}^{-1}(y_2 - \mu_{\star})\right\} \qquad \mathbf{\Sigma} = \begin{bmatrix} 1.0 & 0.7 \\ 0.7 & 1.0 \end{bmatrix}.$$

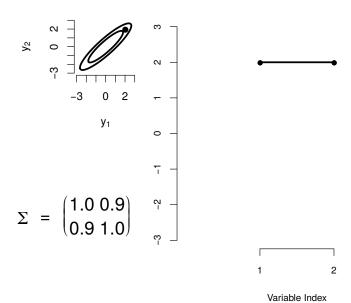


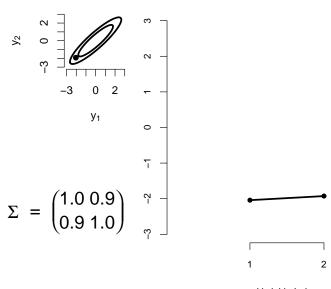


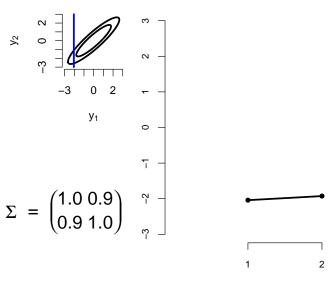
$$\Sigma = \begin{pmatrix} 1.0 & 0.9 \\ 0.9 & 1.0 \end{pmatrix}$$

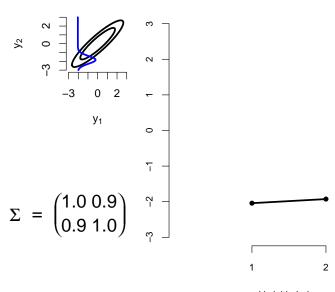












Five Dimensional Example

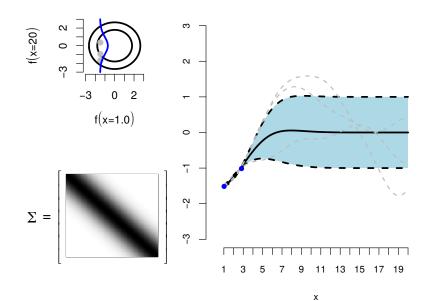
Five Dimensional Example

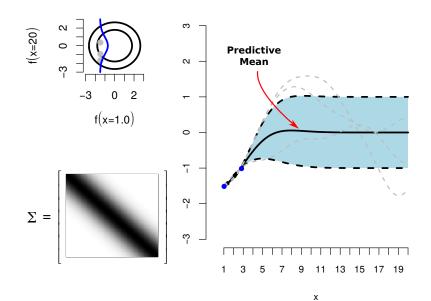
Twenty Dimensional Example

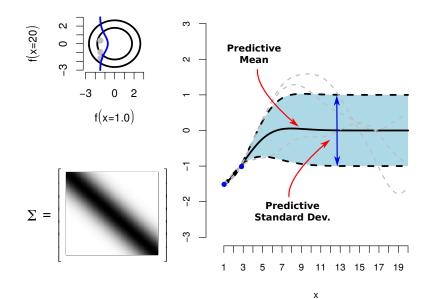
Twenty Dimensional Example

Infinite Dimensional Example

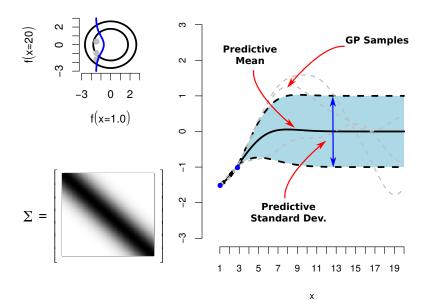
Infinite Dimensional Example



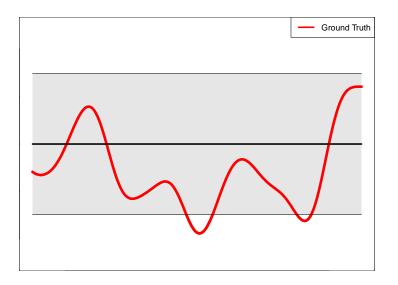


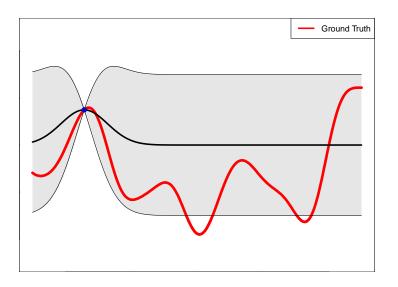


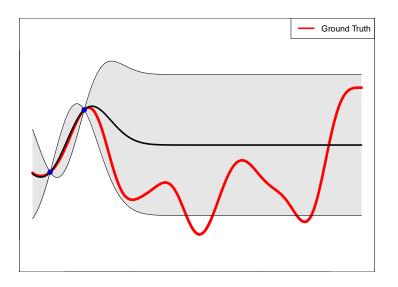
•

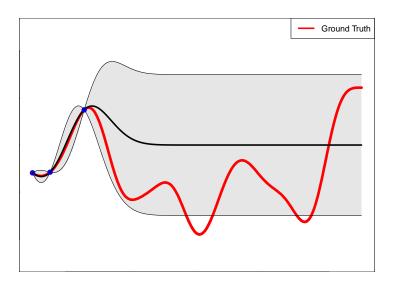


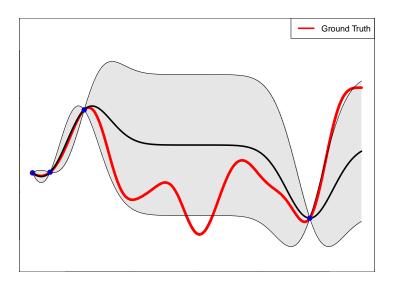
^

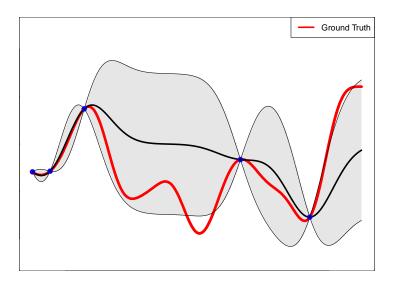


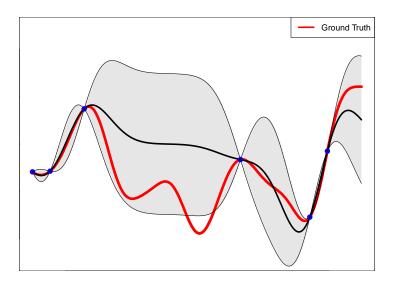


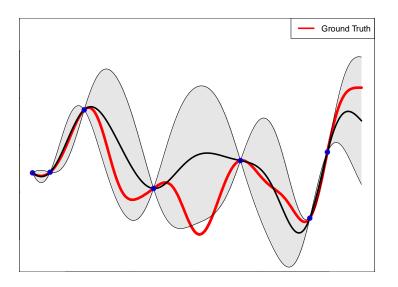


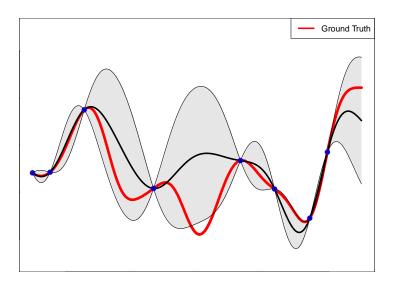


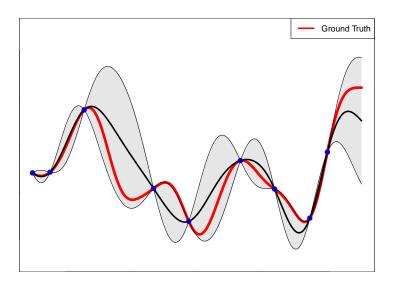


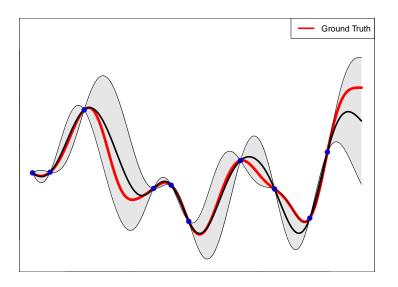


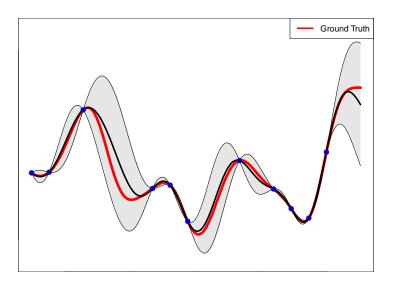


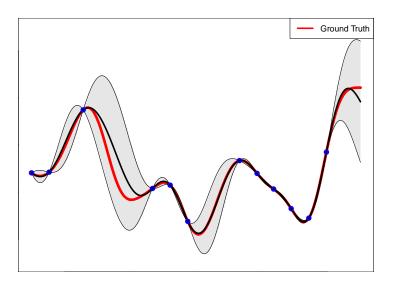


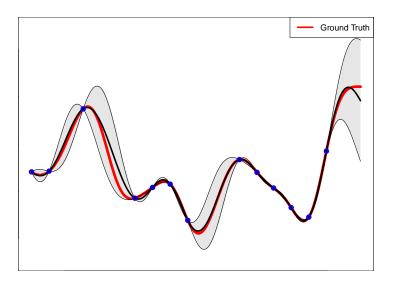


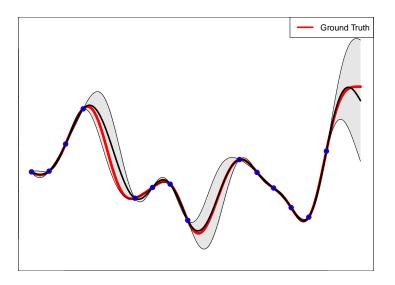


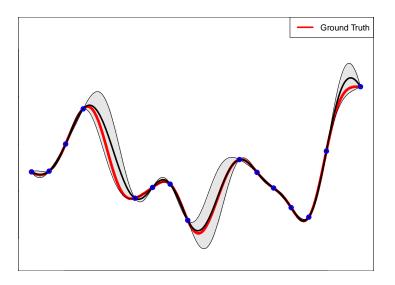


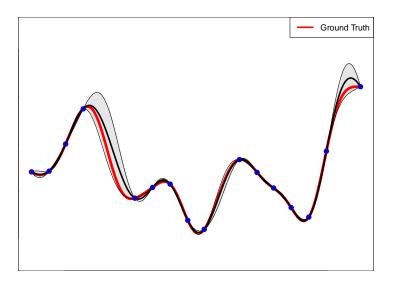


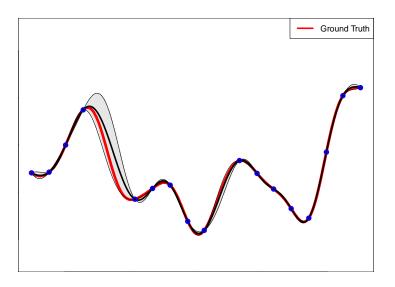


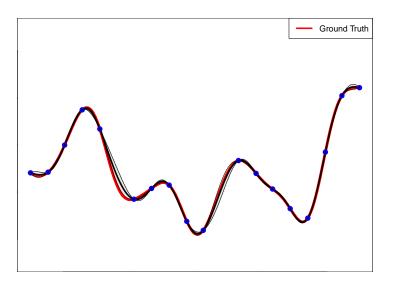


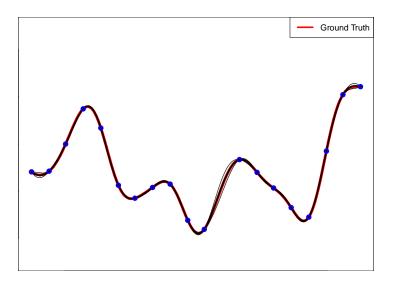


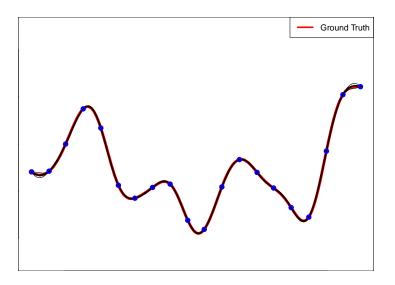












• A GP is *like* a Gaussian distribution with an **infinitely long mean** vector and an $\infty \times \infty$ **covariance matrix**.

- A GP is *like* a Gaussian distribution with an **infinitely long mean** vector and an $\infty \times \infty$ **covariance matrix**.
- The covariance matrix often enforces that function values corresponding to near-by points take similar values.

- A GP is *like* a Gaussian distribution with an **infinitely long mean** vector and an $\infty \times \infty$ **covariance matrix**.
- The covariance matrix often enforces that function values corresponding to near-by points take similar values.
- Due to the Gaussian distribution of finite function values, there are many closed form expressions like the predictive distribution.

- A GP is *like* a Gaussian distribution with an **infinitely long mean** vector and an $\infty \times \infty$ **covariance matrix**.
- The covariance matrix often enforces that function values corresponding to near-by points take similar values.
- Due to the Gaussian distribution of finite function values, there are many closed form expressions like the predictive distribution.
- GPs are non-parametric models and become more expressive the more data we have.

Definition

A Gaussian process is a collection of random variables, any finite number of which have a Gaussian distribution.

Definition

A Gaussian process is a collection of random variables, any finite number of which have a Gaussian distribution.

A Gaussian distribution is fully specified by a mean vector, μ , and covariance matrix Σ :

$$\mathbf{f} = (f_1, \dots, f_N)^\mathsf{T} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 indices $i = 1, \dots, N$.

Definition

A Gaussian process is a collection of random variables, any finite number of which have a Gaussian distribution.

A Gaussian distribution is fully specified by a mean vector, μ , and covariance matrix Σ :

$$\mathbf{f} = (f_1, \dots, f_N)^\mathsf{T} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 indices $i = 1, \dots, N$.

A Gaussian process is fully specified by a mean function $m(\mathbf{x})$ and covariance function $C(\mathbf{x}, \mathbf{x}')$:

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), C(\mathbf{x}, \mathbf{x}')), \text{ indices } \mathbf{x}.$$

The GP prior mean $m(\cdot)$ can be specified by any function! $\mathbb{E}[f(\mathbf{x})] = m(\mathbf{x}).$

The GP prior mean $m(\cdot)$ can be specified by any function!

$$\mathbb{E}[f(\mathbf{x})] = m(\mathbf{x}).$$

The GP prior mean $m(\cdot)$ can be specified by any function!

$$\mathbb{E}[f(\mathbf{x})] = m(\mathbf{x}).$$

The GP prior mean $m(\cdot)$ can be specified by any function!

$$\mathbb{E}[f(\mathbf{x})] = m(\mathbf{x}).$$

The GP prior mean $m(\cdot)$ can be specified by any function!

$$\mathbb{E}[f(\mathbf{x})] = m(\mathbf{x}).$$

The covariance function sets prior covariances among function values!

$$\mathbb{E}\left[\left(f(\mathbf{x}_i)-m(\mathbf{x}_i)\right)\left(f(\mathbf{x}_j)-m(\mathbf{x}_j)\right)\right]=C(\mathbf{x}_i,\mathbf{x}_j).$$

The covariance function sets prior covariances among function values!

$$\mathbb{E}\left[(f(\mathbf{x}_i)-m(\mathbf{x}_i))(f(\mathbf{x}_j)-m(\mathbf{x}_j))\right]=C(\mathbf{x}_i,\mathbf{x}_j).$$

The covariance function sets prior covariances among function values!

$$\mathbb{E}\left[(f(\mathbf{x}_i)-m(\mathbf{x}_i))(f(\mathbf{x}_j)-m(\mathbf{x}_j))\right]=C(\mathbf{x}_i,\mathbf{x}_j).$$

The covariance function sets prior covariances among function values!

$$\mathbb{E}\left[(f(\mathbf{x}_i)-m(\mathbf{x}_i))(f(\mathbf{x}_j)-m(\mathbf{x}_j))\right]=C(\mathbf{x}_i,\mathbf{x}_j).$$

The covariance function sets prior covariances among function values!

$$\mathbb{E}\left[(f(\mathbf{x}_i)-m(\mathbf{x}_i))(f(\mathbf{x}_j)-m(\mathbf{x}_j))\right]=C(\mathbf{x}_i,\mathbf{x}_j).$$

The covariance function sets prior covariances among function values!

$$\mathbb{E}\left[(f(\mathbf{x}_i)-m(\mathbf{x}_i))(f(\mathbf{x}_j)-m(\mathbf{x}_j))\right]=C(\mathbf{x}_i,\mathbf{x}_j).$$

If the GP mean has infinite length and the GP covariance matrix is $\infty \times \infty$, how do we represent a GP on a computer?

If the GP mean has infinite length and the GP covariance matrix is $\infty \times \infty$, how do we represent a GP on a computer?

We can use the marginalization property of distributions:

$$\begin{split} & \rho(\mathbf{y}_1) = \int \rho(\mathbf{y}_1, \mathbf{y}_2) d\mathbf{y}_2 \,, \\ & \rho(\mathbf{y}_1, \mathbf{y}_2) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \end{array} \right], \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right], \left[\begin{array}{cc} \mathbf{A} & \mathbf{C} \\ \mathbf{C}^\mathsf{T} & \mathbf{B} \end{array} \right] \right) \,, \end{split}$$

If the GP mean has infinite length and the GP covariance matrix is $\infty \times \infty$, how do we represent a GP on a computer?

We can use the marginalization property of distributions:

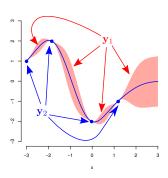
$$\begin{split} p(\mathbf{y}_1) &= \int p(\mathbf{y}_1, \mathbf{y}_2) d\mathbf{y}_2 \,, \\ p(\mathbf{y}_1, \mathbf{y}_2) &= \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \end{array} \right], \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right], \left[\begin{array}{c} \mathbf{A} & \mathbf{C} \\ \mathbf{C}^\mathsf{T} & \mathbf{B} \end{array} \right] \right) \,, \\ p(\mathbf{y}_1) &= \mathcal{N}(\mathbf{y}_1 | \mathbf{a}, \mathbf{A}) \,, \end{split}$$

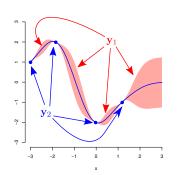
If the GP mean has infinite length and the GP covariance matrix is $\infty \times \infty$, how do we represent a GP on a computer?

We can use the marginalization property of distributions:

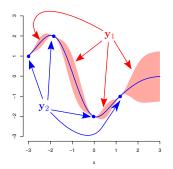
$$\begin{split} & p(\mathbf{y}_1) = \int p(\mathbf{y}_1, \mathbf{y}_2) d\mathbf{y}_2 \,, \\ & p(\mathbf{y}_1, \mathbf{y}_2) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \end{array} \right], \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right], \left[\begin{array}{c} \mathbf{A} & \mathbf{C} \\ \mathbf{C}^\mathsf{T} & \mathbf{B} \end{array} \right] \right) \,, \\ & p(\mathbf{y}_1) = \mathcal{N}(\mathbf{y}_1 | \mathbf{a}, \mathbf{A}) \,, \end{split}$$

We only need to work with finite sets of random variables!

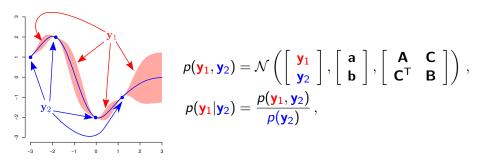




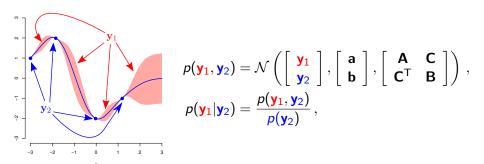
$$\rho(\mathbf{y_1}, \mathbf{y_2}) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y_1} \\ \mathbf{y_2} \end{array} \right], \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right], \left[\begin{array}{cc} \mathbf{A} & \mathbf{C} \\ \mathbf{C}^\mathsf{T} & \mathbf{B} \end{array} \right] \right) \,,$$



$$p(\mathbf{y}_1, \mathbf{y}_2) = \mathcal{N}\left(\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \begin{bmatrix} \mathbf{A} & \mathbf{C} \\ \mathbf{C}^\mathsf{T} & \mathbf{B} \end{bmatrix}\right),$$
$$p(\mathbf{y}_1|\mathbf{y}_2) = \frac{p(\mathbf{y}_1, \mathbf{y}_2)}{p(\mathbf{y}_2)},$$

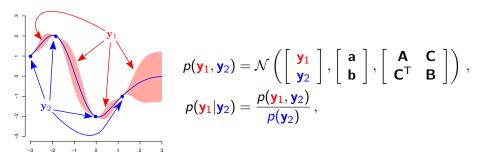


$$p(\mathbf{y}_1|\mathbf{y}_2) = \mathcal{N}\left(\mathbf{y}_1 \middle| \mathbf{a} + \mathbf{C}\mathbf{B}^{-1}(\mathbf{y}_2 - \mathbf{b}), \mathbf{A} - \mathbf{C}\mathbf{B}^{-1}\mathbf{C}^{\mathsf{T}}\right)$$



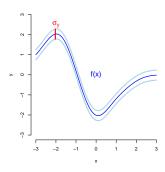
$$p(\mathbf{y}_1|\mathbf{y}_2) = \mathcal{N}\left(\mathbf{y}_1|\mathbf{a} + \mathbf{C}\mathbf{B}^{-1}(\mathbf{y}_2 - \mathbf{b}), \mathbf{A} - \mathbf{C}\mathbf{B}^{-1}\mathbf{C}^{\mathsf{T}}\right)$$

• The predictive mean is linear in y2.



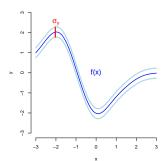
$$p(\mathbf{y}_1|\mathbf{y}_2) = \mathcal{N}\left(\mathbf{y}_1\middle|\mathbf{a} + \mathbf{C}\mathbf{B}^{-1}(\mathbf{y}_2 - \mathbf{b}), \mathbf{A} - \mathbf{C}\mathbf{B}^{-1}\mathbf{C}^{\mathsf{T}}\right)$$

- The predictive mean is linear in y₂.
- The predictive covariance is more confident than the prior!.



$$y(\mathbf{x}) = f(\mathbf{x}) + \epsilon \sigma_{\mathbf{y}},$$

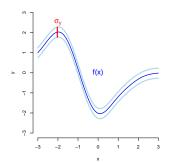
 $p(\epsilon) = \mathcal{N}(\epsilon|0,1).$



$$y(\mathbf{x}) = f(\mathbf{x}) + \epsilon \sigma_y,$$

 $p(\epsilon) = \mathcal{N}(\epsilon|0,1).$

Since f(x) follows a GP and ϵ is Gaussian y(x) is another GP!

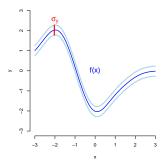


$$y(\mathbf{x}) = f(\mathbf{x}) + \epsilon \sigma_{\mathbf{y}},$$

 $p(\epsilon) = \mathcal{N}(\epsilon|0,1).$

Since f(x) follows a GP and ϵ is Gaussian y(x) is another GP!

$$y(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), C(\mathbf{x}, \mathbf{x}') + \mathbb{I}(\mathbf{x} = \mathbf{x}')\sigma_y^2)$$



$$y(\mathbf{x}) = f(\mathbf{x}) + \epsilon \sigma_y,$$

 $p(\epsilon) = \mathcal{N}(\epsilon|0,1).$

Since f(x) follows a GP and ϵ is Gaussian y(x) is another GP!

$$y(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), C(\mathbf{x}, \mathbf{x}') + \mathbb{I}(\mathbf{x} = \mathbf{x}')\sigma_y^2)$$

The predictive distribution is:

$$p(\mathbf{y}_1|\mathbf{y}_2) = \mathcal{N}\left(\mathbf{y}_1 \middle| \mathbf{a} + \mathbf{C}(\mathbf{B} + \mathbf{I}\sigma_y^2)^{-1}(\mathbf{y}_2 - \mathbf{b}), \mathbf{A} - \mathbf{C}(\mathbf{B} + \mathbf{I}\sigma_y^2)^{-1}\mathbf{C}^\mathsf{T}\right)$$

Squared Exponential:
$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp \left\{ -\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j - x_j'}{l_j} \right)^2 \right\}$$

Squared Exponential:
$$C(\mathbf{x}, \mathbf{x}') = \frac{\sigma^2}{\sigma^2} \exp \left\{ -\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j - x_j'}{l_j} \right)^2 \right\}$$

- Vertical scale —
- Horizontal scale -

Squared Exponential:
$$C(\mathbf{x}, \mathbf{x}') = \frac{\sigma^2}{\sigma^2} \exp \left\{ -\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j - x_j'}{l_j} \right)^2 \right\}$$

Squared Exponential:
$$C(\mathbf{x}, \mathbf{x}') = \frac{\sigma^2}{\sigma^2} \exp \left\{ -\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j - x_j'}{l_j} \right)^2 \right\}$$

Squared Exponential:
$$C(\mathbf{x}, \mathbf{x}') = \frac{\sigma^2}{\sigma^2} \exp \left\{ -\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j - x_j'}{l_j} \right)^2 \right\}$$

Squared Exponential:
$$C(\mathbf{x}, \mathbf{x}') = \frac{\sigma^2}{\sigma^2} \exp \left\{ -\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j - x_j'}{l_j} \right)^2 \right\}$$

How do we choose the hyper-parameters?

Intuition: find parameters θ that are compatible with the observed data.

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})}$$

How do we choose the hyper-parameters?

Intuition: find parameters θ that are compatible with the observed data.

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})}$$

(posterior) (likelihood)

what we know after what the data what we know before seeing the data \propto tell us \times seeing the data (prior)

How do we choose the hyper-parameters?

Intuition: find parameters θ that are compatible with the observed data.

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})}$$

what we know after what the data what we know before seeing the data \propto tell us \times seeing the data (posterior) (likelihood) (prior)

$$egin{aligned}
ho(\mathbf{y}| heta) &\equiv ext{how well does } heta ext{ explain the observed data} \ &= \mathcal{N}\left(\mathbf{y}|\mathbf{0}, \mathbf{\Sigma} + \mathbf{I}\sigma_{\mathbf{y}}^2
ight) \end{aligned}$$

How do we choose the hyper-parameters?

Intuition: find parameters θ that are compatible with the observed data.

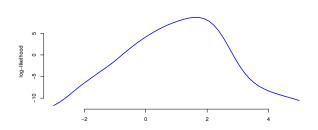
$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})}$$

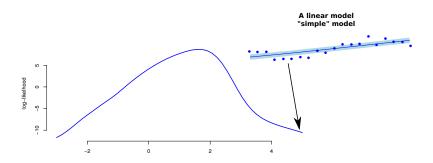
what we know after what the data what we know before seeing the data
$$\propto$$
 tell us \times seeing the data (posterior) (likelihood) (prior)

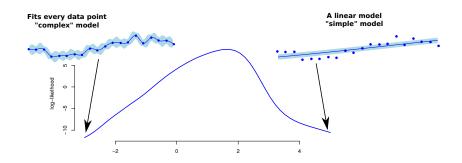
$$p(\mathbf{y}|\theta) \equiv$$
 how well does θ explain the observed data
$$= \mathcal{N}\left(\mathbf{y}|\mathbf{0}, \mathbf{\Sigma} + \mathbf{I}\sigma_{\mathbf{y}}^{2}\right)$$

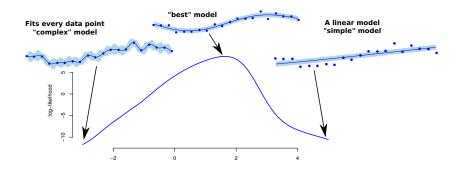
Often, with a reasonable amount of data, maximizing $p(y|\theta)$ w.r.t. θ gives good results as it favors the right model!

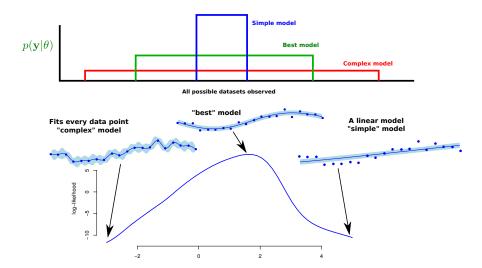
How do we choose the hyper-parameters?

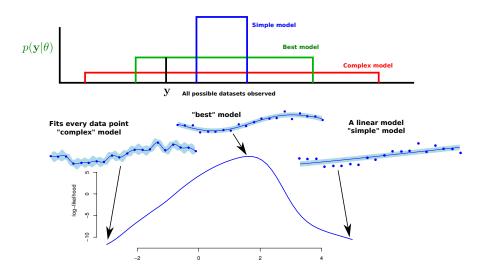


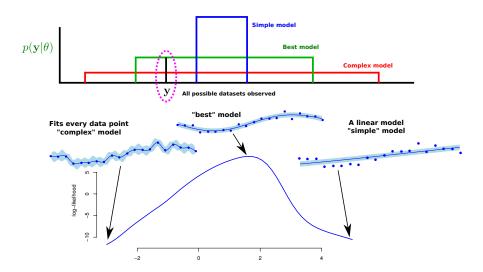










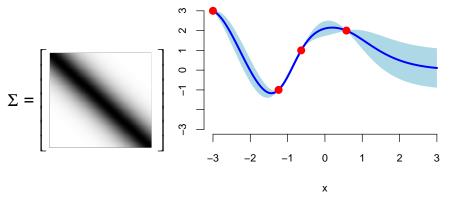


$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \frac{2^{1-\nu)}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu r}}{l} \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu r}}{l} \right)$$

$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \frac{2^{1-\nu)}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu r}}{l} \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu r}}{l} \right)$$

$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \frac{2^{1-\nu)}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu r}}{l} \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu r}}{l} \right)$$

$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}r}{l} \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}r}{l} \right)$$

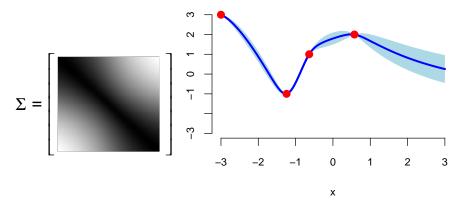


$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \frac{2}{\pi} \sin^{-1} \left(\frac{\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}'}{\sqrt{(1 + 2\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}')(1 + 2\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}')}} \right)$$

$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \frac{2}{\pi} \sin^{-1} \left(\frac{\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}'}{\sqrt{(1 + 2\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}')(1 + 2\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}')}} \right)$$

$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \frac{2}{\pi} \sin^{-1} \left(\frac{\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}'}{\sqrt{(1 + 2\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}')(1 + 2\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}')}} \right)$$

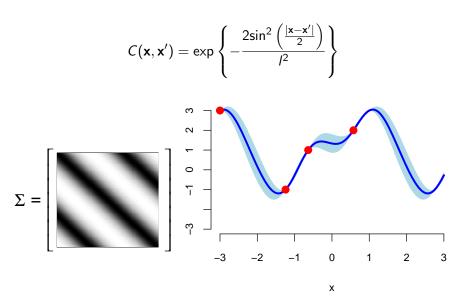
$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \frac{2}{\pi} sin^{-1} \left(\frac{\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}'}{\sqrt{(1 + 2\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}')(1 + 2\mathbf{x}^\mathsf{T} \mathbf{\Sigma} \mathbf{x}')}} \right)$$



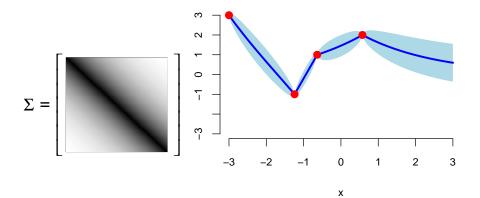
$$C(\mathbf{x}, \mathbf{x}') = \exp \left\{ -\frac{2\sin^2\left(\frac{|\mathbf{x} - \mathbf{x}'|}{2}\right)}{J^2} \right\}$$

$$C(\mathbf{x}, \mathbf{x}') = \exp \left\{ -\frac{2\sin^2\left(\frac{|\mathbf{x} - \mathbf{x}'|}{2}\right)}{J^2} \right\}$$

$$C(\mathbf{x}, \mathbf{x}') = \exp \left\{ -\frac{2\sin^2\left(\frac{|\mathbf{x} - \mathbf{x}'|}{2}\right)}{J^2} \right\}$$



$$C(\mathbf{x}, \mathbf{x}') = \exp\left\{-\frac{|\mathbf{x} - \mathbf{x}'|}{2l^2}\right\}$$



• Covariance functions include strong assumptions about $f(\mathbf{x})$.

- Covariance functions include strong assumptions about f(x).
- Often the sq. exponential or Matérn work fine for regression.

- Covariance functions include strong assumptions about f(x).
- Often the sq. exponential or Matérn work fine for regression.
- Covariance functions parameters allow to interpret the data.

- Covariance functions include strong assumptions about f(x).
- Often the sq. exponential or Matérn work fine for regression.
- Covariance functions parameters allow to interpret the data.
- Covariance functions can be combined (sum + and product \times).

- Covariance functions include strong assumptions about f(x).
- Often the sq. exponential or Matérn work fine for regression.
- Covariance functions parameters allow to interpret the data.
- Covariance functions can be combined (sum + and product \times).
- The likelihood p(y) can discriminate among them (use with care).

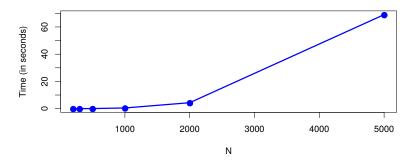
The memory cost is in $\mathcal{O}(N^2)$ since we have to compute Σ .

The memory cost is in $\mathcal{O}(N^2)$ since we have to compute Σ .

The computational cost is in $\mathcal{O}(N^3)$ since we have to invert Σ .

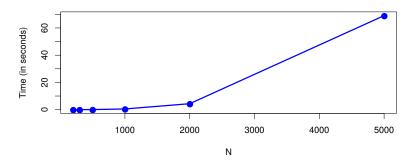
The memory cost is in $\mathcal{O}(N^2)$ since we have to compute Σ .

The computational cost is in $\mathcal{O}(N^3)$ since we have to invert Σ .



The memory cost is in $\mathcal{O}(N^2)$ since we have to compute Σ .

The computational cost is in $\mathcal{O}(N^3)$ since we have to invert Σ .



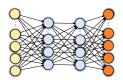
We can handle just a few thousand data instances at most!

Improving the Cost of Gaussian Processes

GPs are non-parametric models whose flexibility grows with N!

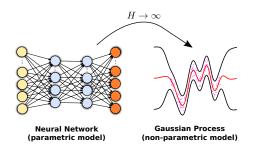
GPs are non-parametric models whose flexibility grows with N!

GPs are non-parametric models whose flexibility grows with N!

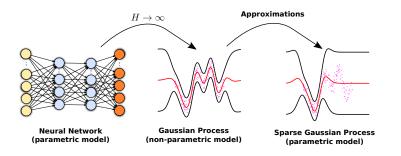


Neural Network (parametric model)

GPs are non-parametric models whose flexibility grows with N!

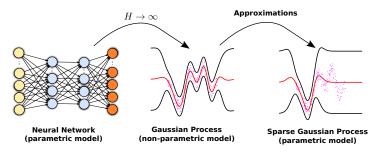


GPs are non-parametric models whose flexibility grows with N!



GPs are non-parametric models whose flexibility grows with N!

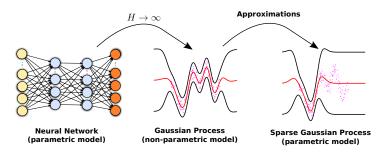
Idea: go back to the parametric model, but in such a way that we can still make inference easily!



Approximations based on inducing points:

GPs are non-parametric models whose flexibility grows with N!

Idea: go back to the parametric model, but in such a way that we can still make inference easily!

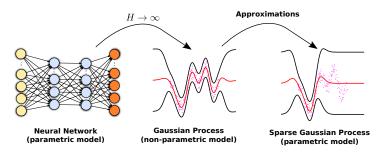


Approximations based on inducing points:

FITC: changes the GP model to remove some dependencies!

GPs are non-parametric models whose flexibility grows with N!

Idea: go back to the parametric model, but in such a way that we can still make inference easily!



Approximations based on inducing points:

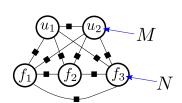
- **FITC**: changes the GP model to remove some dependencies!
- **VFE**: does approximate inference with a simplified distribution q.

1. Extend model with $M \ll N$ inducing points and outputs at $\overline{\mathbf{X}}$.

$$\textit{p}(f,u) = \mathcal{N}\left(\left[\begin{array}{c} f \\ u \end{array}\right] \middle| \left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} K_{ff} & K_{fu} \\ K_{uf} & K_{uu} \end{array}\right]\right)$$

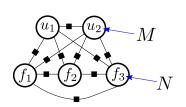
1. Extend model with $M \ll N$ inducing points and outputs at $\overline{\mathbf{X}}$.

$$\label{eq:posterior} \textit{p}(f,u) = \mathcal{N}\left(\left[\begin{array}{c} f \\ u \end{array}\right] \middle| \left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} K_{ff} & K_{fu} \\ K_{uf} & K_{uu} \end{array}\right]\right)$$



1. Extend model with $M \ll N$ inducing points and outputs at $\overline{\mathbf{X}}$.

$$\label{eq:posterior} \rho(f,u) = \mathcal{N}\left(\left[\begin{array}{c} f \\ u \end{array}\right] \middle| \left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} K_{ff} & K_{fu} \\ K_{uf} & K_{uu} \end{array}\right]\right)$$

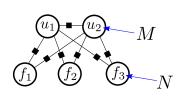


2. Introduce conditional independences:

$$p(\mathbf{f}|\mathbf{u}) = \prod_{i=1}^{N} p(f_i|\mathbf{u})$$

1. Extend model with $M \ll N$ inducing points and outputs at $\overline{\mathbf{X}}$.

$$\textit{p}(f,u) = \mathcal{N}\left(\left[\begin{array}{c} f \\ u \end{array}\right] \middle| \left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} K_{ff} & K_{fu} \\ K_{uf} & K_{uu} \end{array}\right]\right)$$

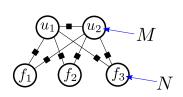


2. Introduce conditional independences:

$$p(\mathbf{f}|\mathbf{u}) = \prod_{i=1}^{N} p(f_i|\mathbf{u})$$

1. Extend model with $M \ll N$ inducing points and outputs at $\overline{\mathbf{X}}$.

$$\textit{p}(f,u) = \mathcal{N}\left(\left[\begin{array}{c} f \\ u \end{array}\right] \middle| \left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} K_{ff} & K_{fu} \\ K_{uf} & K_{uu} \end{array}\right]\right)$$



2. Introduce conditional independences:

$$p(\mathbf{f}|\mathbf{u}) = \prod_{i=1}^{N} p(f_i|\mathbf{u})$$

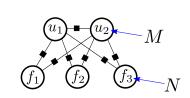
3. Marginalize \mathbf{u} to obtain an approximate GP prior for \mathbf{f} .

$$p(\mathbf{f}) = \int p(\mathbf{f}|\mathbf{u})p(\mathbf{u})d\mathbf{u} = \prod_{i=1}^{N} p(f_i|\mathbf{u})p(\mathbf{u})d\mathbf{u} = \mathcal{N}(\mathbf{f}|0, \tilde{\mathbf{K}}_{\mathbf{f}\mathbf{f}})$$

where $\tilde{\mathbf{K}}_{\mathbf{ff}} = \mathbf{D} + \mathbf{Q}_{\mathbf{ff}}$ with \mathbf{D} diagonal and $\mathbf{Q}_{\mathbf{ff}} = \mathbf{K}_{\mathbf{fu}} \mathbf{K}_{\mathbf{uu}}^{-1} \mathbf{K}_{\mathbf{uf}}$ of rank M.

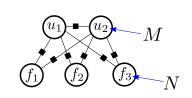
5. We make the prediction of f^* at \mathbf{x}^* by considering the approximate GP prior:

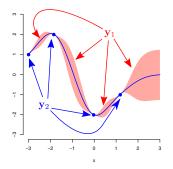
$$p(\mathbf{f}, \mathbf{f}^{\star}) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ \mathbf{f}^{\star} \end{bmatrix} \middle| \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{\tilde{K}}_{\mathbf{f}} & \mathbf{Q}_{\mathbf{f}f^{\star}} \\ \mathbf{Q}_{\mathbf{f}^{\star}f} & \mathbf{K}_{\mathbf{f}^{\star}f^{\star}} \end{bmatrix}\right) \qquad (f_{1})$$



5. We make the prediction of f^* at \mathbf{x}^* by considering the approximate GP prior:

$$p(\mathbf{f},\mathbf{f}^{\star}) = \mathcal{N}\left(\left[\begin{array}{c}\mathbf{f}\\\mathbf{f}^{\star}\end{array}\right]\middle|\left[\begin{array}{c}\mathbf{0}\\\mathbf{0}\end{array}\right],\left[\begin{array}{cc}\tilde{\mathbf{K}}_{\mathbf{f}\mathbf{f}} & \mathbf{Q}_{\mathbf{f}\mathbf{f}^{\star}}\\\mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}} & \mathbf{K}_{\mathbf{f}^{\star}\mathbf{f}^{\star}}\end{array}\right]\right)$$

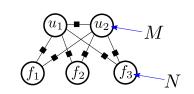




$$p(\mathbf{y}_1, \mathbf{y}_2) = \mathcal{N}\left(\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \begin{bmatrix} \mathbf{A} & \mathbf{C} \\ \mathbf{C}^\mathsf{T} & \mathbf{B} \end{bmatrix}\right),$$
$$p(\mathbf{y}_1|\mathbf{y}_2) = \frac{p(\mathbf{y}_1, \mathbf{y}_2)}{p(\mathbf{y}_2)},$$

5. We make the prediction of f^* at \mathbf{x}^* by considering the approximate GP prior:

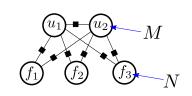
$$p(\mathbf{f}, \mathbf{f}^{\star}) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{f} \\ \mathbf{f}^{\star} \end{array}\right] \middle| \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{cc} \mathbf{\tilde{K}_{ff}} & \mathbf{Q_{ff^{\star}}} \\ \mathbf{Q_{f^{\star}f}} & \mathbf{K_{f^{\star}f^{\star}}} \end{array}\right]\right)$$



$$\rho(\mathbf{f}^{\star}|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}^{\star}|\ \mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}}\tilde{\mathbf{K}}_{\mathbf{f}^{\mathbf{f}}}^{-1}\mathbf{f}, \mathbf{K}_{\mathbf{f}^{\star}\mathbf{f}^{\star}} - \mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}}^{\mathsf{T}}\tilde{\mathbf{K}}_{\mathbf{f}^{\mathbf{f}}}^{-1}\mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}}\right)$$

5. We make the prediction of f^* at \mathbf{x}^* by considering the approximate GP prior:

$$p(\mathbf{f}, \mathbf{f}^{\star}) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{f} \\ \mathbf{f}^{\star} \end{array}\right] \middle| \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{cc} \mathbf{\tilde{K}_{ff}} & \mathbf{Q_{ff^{\star}}} \\ \mathbf{Q_{f^{\star}f}} & \mathbf{K_{f^{\star}f^{\star}}} \end{array}\right]\right)$$

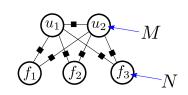


$$p(\mathbf{f}^{\star}|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}^{\star}|\ \mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}}\tilde{\mathbf{K}}_{\mathbf{f}^{\mathbf{f}}}^{-1}\mathbf{f}, \mathbf{K}_{\mathbf{f}^{\star}\mathbf{f}^{\star}} - \mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}}^{\mathsf{T}}\tilde{\mathbf{K}}_{\mathbf{f}^{\mathbf{f}}}^{-1}\mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}}\right)$$

Due to the structure in \tilde{K}_{ff} all computations have cost in $\mathcal{O}(NM^2)$.

5. We make the prediction of f^* at \mathbf{x}^* by considering the approximate GP prior:

$$p(\mathbf{f}, \mathbf{f}^{\star}) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ \mathbf{f}^{\star} \end{bmatrix} \middle| \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \tilde{\mathbf{K}}_{\mathbf{f}} & \mathbf{Q}_{\mathbf{f}^{\star}} \\ \mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}} & \mathbf{K}_{\mathbf{f}^{\star}\mathbf{f}^{\star}} \end{bmatrix}\right) \qquad f_{1}$$



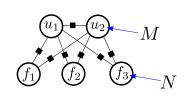
$$p(\mathbf{f}^{\star}|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}^{\star}|\ \mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}}\tilde{\mathbf{K}}_{\mathbf{f}^{\mathbf{f}}}^{-1}\mathbf{f}, \mathbf{K}_{\mathbf{f}^{\star}\mathbf{f}^{\star}} - \mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}}^{\mathsf{T}}\tilde{\mathbf{K}}_{\mathbf{f}^{\mathbf{f}}}^{-1}\mathbf{Q}_{\mathbf{f}^{\star}\mathbf{f}}\right)$$

Due to the structure in \hat{K}_{ff} all computations have cost in $\mathcal{O}(NM^2)$.

6. How do we find the location of the inducing points $\overline{\mathbf{X}}$?

5. We make the prediction of f^* at \mathbf{x}^* by considering the approximate GP prior:

$$p(\mathbf{f}, \mathbf{f}^*) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ \mathbf{f}^* \end{bmatrix} \middle| \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \tilde{\mathbf{K}}_{\mathbf{f}} & \mathbf{Q}_{\mathbf{f}^*} \\ \mathbf{Q}_{\mathbf{f}^*\mathbf{f}} & \mathbf{K}_{\mathbf{f}^*\mathbf{f}^*} \end{bmatrix}\right) \qquad f_1$$

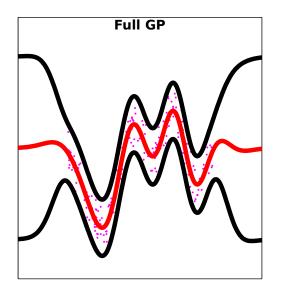


$$\textit{p}(f^{\star}|f) = \mathcal{N}\left(f^{\star}|\ Q_{f^{\star}f}\tilde{K}_{ff}^{-1}f, K_{f^{\star}f^{\star}} - Q_{f^{\star}f}^{\mathsf{T}}\tilde{K}_{ff}^{-1}Q_{f^{\star}f}\right)$$

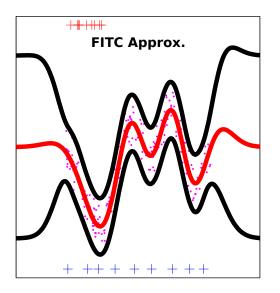
Due to the structure in \tilde{K}_{ff} all computations have cost in $\mathcal{O}(NM^2)$.

6. How do we find the location of the inducing points $\overline{\mathbf{X}}$?

Simply treat them as prior parameters and maximize the approximate likelihood $p(f|0, \tilde{K}_{ff})!$

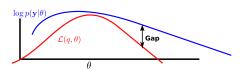


(Snelson & Gahramani, 2006)



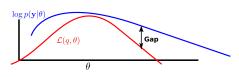
(Snelson & Gahramani, 2006)

$$\log p(\mathbf{y}|\theta) = \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta) d\mathbf{f} d\mathbf{u}$$



$$\log p(\mathbf{y}|\theta) = \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta) d\mathbf{f} d\mathbf{u}$$

$$= \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta) \frac{q(\mathbf{f}, \mathbf{u})}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u}$$



$$\log p(\mathbf{y}|\theta) = \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta) d\mathbf{f} d\mathbf{u}$$

$$\log p(\mathbf{y}| heta)$$
 Gap $heta$

$$= \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u} | \theta) \frac{q(\mathbf{f}, \mathbf{u})}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u} \ge \int q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y}, \mathbf{f}, \mathbf{u} | \theta)}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u} \equiv \mathcal{L}(\mathbf{q}, \theta)$$

$$\log p(\mathbf{y}|\theta) = \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta) d\mathbf{f} d\mathbf{u}$$

$$\mathcal{L}(q, heta)$$
 Gap

$$= \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u} | \theta) \frac{q(\mathbf{f}, \mathbf{u})}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u} \geq \int q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y}, \mathbf{f}, \mathbf{u} | \theta)}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u} \equiv \mathcal{L}(\mathbf{q}, \theta)$$

$$\mathcal{L}(q,\theta) = \int q(\mathbf{f},\mathbf{u}) \log \frac{p(\mathbf{y},\mathbf{f},\mathbf{u}|\theta)}{q(\mathbf{f},\mathbf{u})} d\mathbf{f} d\mathbf{u} = \log p(\mathbf{y}|\theta) - \mathsf{KL}[q(\mathbf{f},\mathbf{u})|p(\mathbf{f},\mathbf{u}|\mathbf{y})]$$

Lower bound the log-likelihood:

$$\log p(\mathbf{y}|\theta) = \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta) d\mathbf{f} d\mathbf{u}$$

$$\mathcal{L}(q, heta)$$
 Gap

$$= \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u} | \theta) \frac{q(\mathbf{f}, \mathbf{u})}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u} \geq \int q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y}, \mathbf{f}, \mathbf{u} | \theta)}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u} \equiv \frac{\mathcal{L}(\mathbf{q}, \theta)}{q(\mathbf{f}, \mathbf{u})}$$

$$\mathcal{L}(q,\theta) = \int q(\mathbf{f},\mathbf{u}) \log \frac{p(\mathbf{y},\mathbf{f},\mathbf{u}|\theta)}{q(\mathbf{f},\mathbf{u})} d\mathbf{f} d\mathbf{u} = \log p(\mathbf{y}|\theta) - \mathsf{KL}[q(\mathbf{f},\mathbf{u})|p(\mathbf{f},\mathbf{u}|\mathbf{y})]$$

KL ≡ Kullback-Leibler divergence

Lower bound the log-likelihood:

$$\log p(\mathbf{y}|\theta) = \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta) d\mathbf{f} d\mathbf{u}$$

$$\log p(\mathbf{y}| heta)$$
 Gap $heta$

$$= \log \int p(\mathbf{y}, \mathbf{f}, \mathbf{u} | \theta) \frac{q(\mathbf{f}, \mathbf{u})}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u} \geq \int q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y}, \mathbf{f}, \mathbf{u} | \theta)}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u} \equiv \frac{\mathcal{L}(\mathbf{q}, \theta)}{q(\mathbf{f}, \mathbf{u})}$$

$$\mathcal{L}(q,\theta) = \int q(\mathbf{f},\mathbf{u}) \log \frac{p(\mathbf{y},\mathbf{f},\mathbf{u}|\theta)}{q(\mathbf{f},\mathbf{u})} d\mathbf{f} d\mathbf{u} = \log p(\mathbf{y}|\theta) - \mathsf{KL}[q(\mathbf{f},\mathbf{u})|p(\mathbf{f},\mathbf{u}|\mathbf{y})]$$

KL ≡ Kullback-Leibler divergence

By maximizing $\mathcal{L}(q, \theta)$ w.r.t q we are enforcing that $q(f, \mathbf{u})$ looks similar to $p(f, \mathbf{u}|\mathbf{y})$ in terms of the KL!

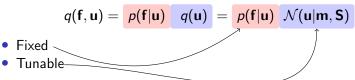
Consider the following approximate distribution:

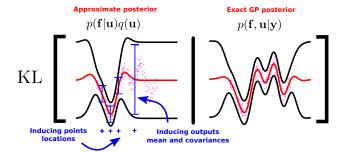
Consider the following approximate distribution:

$$q(\mathbf{f}, \mathbf{u}) = \boxed{p(\mathbf{f}|\mathbf{u})} \quad q(\mathbf{u}) = \boxed{p(\mathbf{f}|\mathbf{u})} \quad \mathcal{N}(\mathbf{u}|\mathbf{m}, \mathbf{S})$$

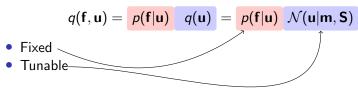
- Fixed
- Tunable-

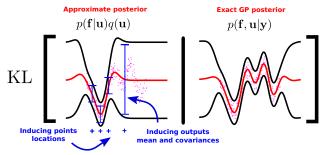
Consider the following approximate distribution:





Consider the following approximate distribution:





The inducing points are now parameters of the approx. dist. q!

$$\mathcal{L}(q,\theta) = \int q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta)}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u}$$
$$= \int p(\mathbf{f}|\mathbf{u}) q(\mathbf{u}) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta) p(\mathbf{f}|\mathbf{u}) p(\mathbf{u})}{p(\mathbf{f}|\mathbf{u}) q(\mathbf{u})} d\mathbf{f} d\mathbf{u}$$

$$\mathcal{L}(q,\theta) = \int q(\mathbf{f},\mathbf{u}) \log \frac{p(\mathbf{y},\mathbf{f},\mathbf{u}|\theta)}{q(\mathbf{f},\mathbf{u})} d\mathbf{f} d\mathbf{u}$$

$$= \int p(\mathbf{f}|\mathbf{u}) q(\mathbf{u}) \log \frac{p(\mathbf{y}|\mathbf{f},\theta) p(\mathbf{f}|\mathbf{u}) p(\mathbf{u})}{p(\mathbf{f}|\mathbf{u}) q(\mathbf{u})} d\mathbf{f} d\mathbf{u}$$

$$\mathcal{L}(q,\theta) = \int q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta)}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u}$$

$$= \int p(\mathbf{f}|\mathbf{u}) q(\mathbf{u}) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta) p(\mathbf{f}|\mathbf{v}) p(\mathbf{u})}{p(\mathbf{f}|\mathbf{v}) q(\mathbf{u})} d\mathbf{f} d\mathbf{u}$$

$$\mathcal{L}(q, \theta) = \mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{y}|\mathbf{f}, \theta)] - \mathbb{KL}[q(\mathbf{u})|p(\mathbf{u})]$$

- Mean squared prediction error)
- KL between Gaussians

$$\mathcal{L}(q,\theta) = \int q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta)}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u}$$

$$= \int p(\mathbf{f}|\mathbf{u}) q(\mathbf{u}) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta) p(\mathbf{f}|\mathbf{u}) p(\mathbf{u})}{p(\mathbf{f}|\mathbf{u}) q(\mathbf{u})} d\mathbf{f} d\mathbf{u}$$

$$\mathcal{L}(q,\theta) = \boxed{\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{y}|\mathbf{f},\theta)]} - \boxed{\mathsf{KL}[q(\mathbf{u})|p(\mathbf{u})]}$$
• Mean squared prediction error

- KL between Gaussians
- No change in the model is made and the cost is in $\mathcal{O}(M^2N)$!

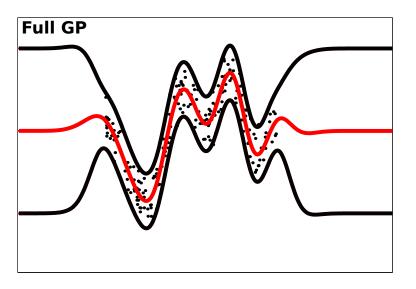
$$\mathcal{L}(q,\theta) = \int q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y}, \mathbf{f}, \mathbf{u}|\theta)}{q(\mathbf{f}, \mathbf{u})} d\mathbf{f} d\mathbf{u}$$

$$= \int p(\mathbf{f}|\mathbf{u}) q(\mathbf{u}) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta) p(\mathbf{f}|\mathbf{u}) p(\mathbf{u})}{p(\mathbf{f}|\mathbf{u}) q(\mathbf{u})} d\mathbf{f} d\mathbf{u}$$

$$\mathcal{L}(q,\theta) = \boxed{\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{y}|\mathbf{f},\theta)]} - \boxed{\mathsf{KL}[q(\mathbf{u})|p(\mathbf{u})]}$$
• Mean squared prediction error

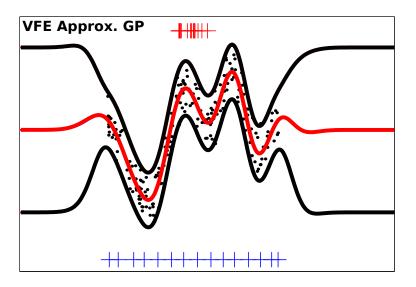
- KL between Gaussians
- No change in the model is made and the cost is in $\mathcal{O}(M^2N)$!
- Predictions are made using $p(\mathbf{f}^*|\mathbf{u})q(\mathbf{u})$ marginalizing out \mathbf{u} .

Variational Free Energy (VFE)



(Titsias, 2009)

Variational Free Energy (VFE)



(Titsias, 2009)

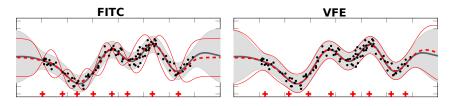
Two approaches:

Two approaches:

- FITC: optimize the marginal likelihood of an approximate GP model.
- VFE: maximize fidelity to the original exact GP.

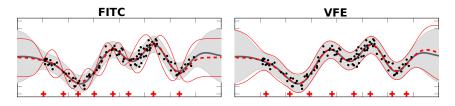
Two approaches:

- FITC: optimize the marginal likelihood of an approximate GP model.
- VFE: maximize fidelity to the original exact GP.



Two approaches:

- FITC: optimize the marginal likelihood of an approximate GP model.
- VFE: maximize fidelity to the original exact GP.



- FITC: less local optima and easier to optimize, also less accurate.
- VFE: more accurate, more local optima, more difficult to optimize.

(Bui et al., 2017) (Bauer et al., 2016)

Can we further improve the computational cost in $\mathcal{O}(NM^2)$?

Can we further improve the computational cost in $\mathcal{O}(NM^2)$?

Minibatch training in NN allows to scale to massive datasets!

Can we further improve the computational cost in $\mathcal{O}(NM^2)$?

Minibatch training in NN allows to scale to massive datasets!

Straight forward to do that in the VFE approach:

$$\begin{split} & \mathcal{L}(q, \theta) = \mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{y}|\mathbf{f}, \theta)] - \mathsf{KL}[q(\mathbf{u})|p(\mathbf{u})] \\ & = \sum_{i=1}^{N} \mathbb{E}_{q(f_i)}[\log p(y_i|f_i, \theta)] - \mathsf{KL}[q(\mathbf{u})|p(\mathbf{u})] \\ & \approx \frac{B}{N} \sum_{i \in \mathcal{B}} \mathbb{E}_{q(f_i)}[\log p(y_i|f_i, \theta)] - \mathsf{KL}[q(\mathbf{u})|p(\mathbf{u})] \end{split}$$

Can we further improve the computational cost in $\mathcal{O}(NM^2)$?

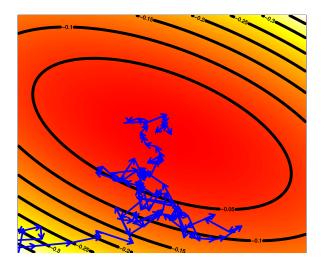
Minibatch training in NN allows to scale to massive datasets!

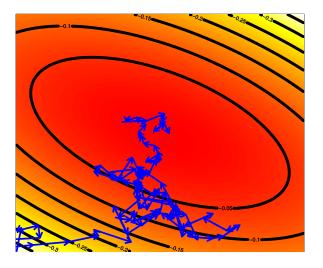
Straight forward to do that in the VFE approach:

$$\begin{split} & \mathcal{L}(q, \theta) = \mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{y}|\mathbf{f}, \theta)] - \mathsf{KL}[q(\mathbf{u})|p(\mathbf{u})] \\ & = \sum_{i=1}^{N} \mathbb{E}_{q(f_i)}[\log p(y_i|f_i, \theta)] - \mathsf{KL}[q(\mathbf{u})|p(\mathbf{u})] \\ & \approx \frac{B}{N} \sum_{i \in \mathcal{B}} \mathbb{E}_{q(f_i)}[\log p(y_i|f_i, \theta)] - \mathsf{KL}[q(\mathbf{u})|p(\mathbf{u})] \end{split}$$

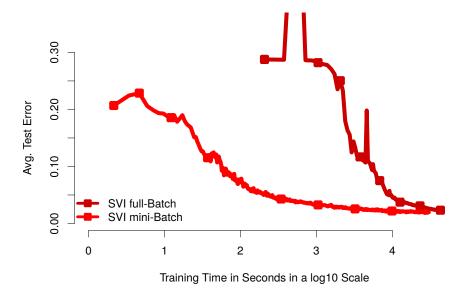
The training cost goes down to $\mathcal{O}(M^3)$ which allows to address datasets with millions of instances!

(Hensman et al., 2013)





To converge to a local neighborhood of the optimum stochastic methods require an estimate of the gradient which can be very cheap!



(Hernández-Lobato, 2015)

Advantages of GPs:

• Non-parametric models!

- Non-parametric models!
- Exact Bayesian inference is tractable!

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Disadvantages of GPs

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Disadvantages of GPs

• Strong assumptions made about f(x)!

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Disadvantages of GPs

- Strong assumptions made about f(x)!
- The predictive distribution is always Gaussian!

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Disadvantages of GPs

- Strong assumptions made about f(x)!
- The predictive distribution is always Gaussian!
- Do not learn specific features to represent the observed data!

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

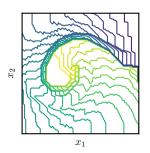
Disadvantages of GPs

- Strong assumptions made about f(x)!
- The predictive distribution is always Gaussian!
- Do not learn specific features to represent the observed data!

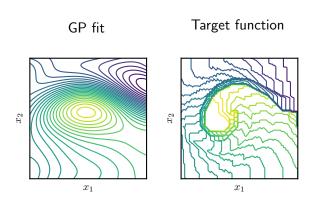
Deep GPs constitute a nice alternative to address these issues!

Motivation for Deep Gaussian Processes

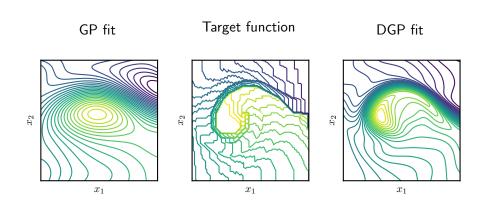
Target function



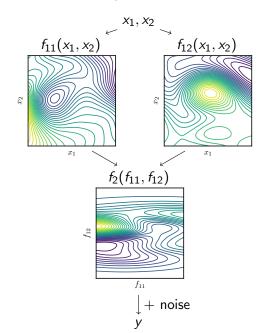
Motivation for Deep Gaussian Processes



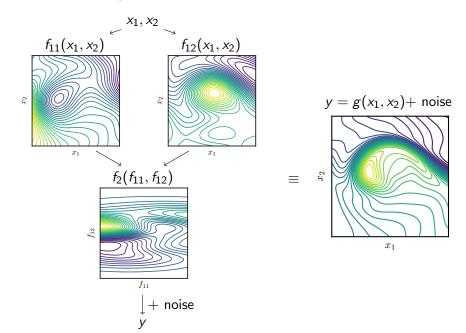
Motivation for Deep Gaussian Processes



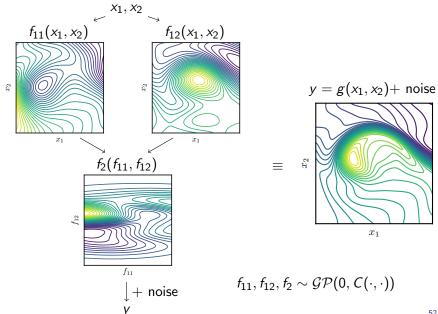
How do deep GPs work?



How do deep GPs work?

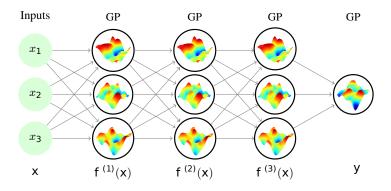


How do deep GPs work?



52 / 66

Deep GPs as Deep Neural Networks



$$y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$$

$$y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$$

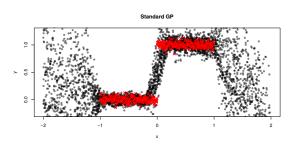
$$y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$$

$$y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$$

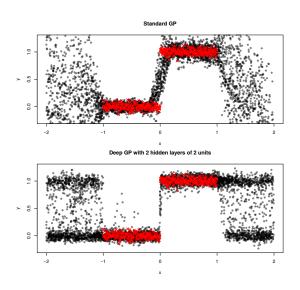
$$y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$$

Deep GPs perform automatic covariance function design!

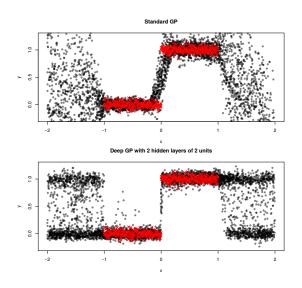
Deep GP Predictive Distribution



Deep GP Predictive Distribution



Deep GP Predictive Distribution



In a deep GP the predictive distribution needs not be Gaussian!

Advantages:

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

Advantages:

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.

Advantages:

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.

Advantages:

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.

Drawbacks:

Advantages:

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.

Drawbacks:

Require complicated approximate inference methods.

Advantages:

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.

Drawbacks:

- Require complicated approximate inference methods.
- High computational cost.

Bayesian inference

Posterior over latent functions (typically at the observed data X):

$$p(\mathbf{f}^1, \mathbf{f}^2, \mathbf{f}^3 | \mathbf{Y}) = \frac{p(\mathbf{f}^1)p(\mathbf{f}^2)p(\mathbf{f}^3) p(\mathbf{Y}|\mathbf{f}^1, \mathbf{f}^2, \mathbf{f}^3, \mathbf{X})}{p(\mathbf{Y})}$$

- GP priors -
- Likelihood function
- Marginal likelihood

But the posterior $p(\mathbf{f}^1, \mathbf{f}^2, \mathbf{f}^3 | \mathbf{Y})$ is **intractable**.

Latent variables: from $\mathcal{O}(N)$ to $\mathcal{O}(M)$, with $M \ll N$.

Distribution on f given by GP with inducing inputs $\bar{\mathbf{X}}$ and outputs \mathbf{u} .

Latent variables: from $\mathcal{O}(N)$ to $\mathcal{O}(M)$, with $M \ll N$.

Distribution on f given by GP with inducing inputs $\bar{\mathbf{X}}$ and outputs \mathbf{u} .

If
$$\mathbf{u}$$
 is known, then $p(f(\mathbf{x}^\star)|\mathbf{u}) = \mathcal{N}(f(\mathbf{x}^\star)|m^\star, v^\star)$, where
$$m^\star = \mathbf{k}_{f^\star,\mathbf{u}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u} \,,$$

$$v^\star = k_{f^\star,f^\star} - \mathbf{k}_{f^\star,\mathbf{u}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{k}_{\mathbf{u},f^\star} \,.$$

Latent variables: from $\mathcal{O}(N)$ to $\mathcal{O}(M)$, with $M \ll N$.

Distribution on f given by GP with inducing inputs $\bar{\mathbf{X}}$ and outputs \mathbf{u} .

If
$$\mathbf{u}$$
 is known, then $p(f(\mathbf{x}^{\star})|\mathbf{u}) = \mathcal{N}(f(\mathbf{x}^{\star})|m^{\star}, v^{\star})$, where
$$m^{\star} = \mathbf{k}_{f^{\star},\mathbf{u}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u},$$

$$v^{\star} = k_{f^{\star},f^{\star}} - \mathbf{k}_{f^{\star},\mathbf{u}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{k}_{\mathbf{u},f^{\star}}.$$
 If $p(\mathbf{u}) = \mathcal{N}(\mathbf{u}|\mathbf{m},\mathbf{S})$, then $p(f(\mathbf{x}^{\star})) = \mathcal{N}(f(\mathbf{x}^{\star})|m^{\star}, v^{\star})$, where
$$m^{\star} = \mathbf{k}_{f^{\star},\mathbf{u}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{m},$$

$$v^{\star} = k_{f^{\star},f^{\star}} - \mathbf{k}_{f^{\star},\mathbf{u}} \mathbf{K}_{\mathbf{u},f^{\star}}^{-1} \mathbf{k}_{\mathbf{u},f^{\star}} + \mathbf{k}_{f^{\star},\mathbf{u}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{S} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{k}_{\mathbf{u},f^{\star}}$$

Latent variables: from $\mathcal{O}(N)$ to $\mathcal{O}(M)$, with $M \ll N$.

Distribution on f given by GP with inducing inputs $\bar{\mathbf{X}}$ and outputs \mathbf{u} .

If **u** is known, then
$$p(f(\mathbf{x}^*)|\mathbf{u}) = \mathcal{N}(f(\mathbf{x}^*)|m^*, v^*)$$
, where

$$m^* = \mathbf{k}_{f^*,\mathbf{u}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u} ,$$

$$v^* = k_{f^*,f^*} - \mathbf{k}_{f^*,\mathbf{u}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{k}_{\mathbf{u},f^*} .$$

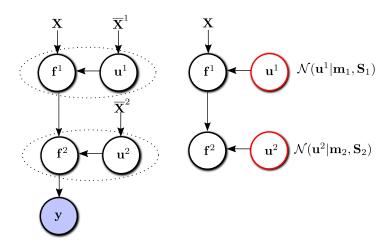
If
$$p(\mathbf{u}) = \mathcal{N}(\mathbf{u}|\mathbf{m}, \mathbf{S})$$
, then $p(f(\mathbf{x}^*)) = \mathcal{N}(f(\mathbf{x}^*)|m^*, v^*)$, where $m^* = \mathbf{k}_{f^*, \mathbf{u}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{m}$, $v^* = k_{f^*, f^*} - \mathbf{k}_{f^*, \mathbf{u}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{k}_{\mathbf{u}, f^*} + \mathbf{k}_{f^*, \mathbf{u}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{S} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{k}_{\mathbf{u}, f^*}$

Given u or a Gaussian for u, f is fully specified!

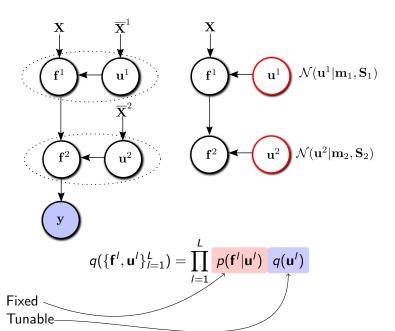
Deep GPs Joint Distribution

$$p(\mathbf{y}, \{\mathbf{u}^{I}, \mathbf{f}^{I}\}_{I=1}^{L}) = \underbrace{\prod_{i=1}^{N} p(y_{i}|f_{i}^{L})}_{\text{Deep GP prior}} \times \underbrace{\prod_{l=1}^{L} p(\mathbf{f}^{I}|\mathbf{u}^{I}, \overline{\mathbf{X}}^{I}) p(\mathbf{u}^{I}|\overline{\mathbf{X}}^{I})}_{\text{Deep GP prior}}$$

Graphical Model and Posterior Approximation



Graphical Model and Posterior Approximation



Based on minimizing $KL(q(\lbrace \mathbf{u}^I, \mathbf{f}^I \rbrace_{l=1}^L) | p(\lbrace \mathbf{u}^I, \mathbf{f}^I \rbrace_{l=1}^L | \mathbf{y}))$

Based on minimizing
$$KL(q(\lbrace \mathbf{u}^l, \mathbf{f}^l \rbrace_{l=1}^L) | p(\lbrace \mathbf{u}^l, \mathbf{f}^l \rbrace_{l=1}^L | \mathbf{y}))$$

Equivalent to maximizing the lower bound on $\log p(y)$:

$$\mathcal{L} = \mathbb{E}_{q} \left[\log \frac{\prod_{i=1}^{N} \rho(y_{i}|f_{i}^{L}) \prod_{l=1}^{L} \rho(\mathbf{f}^{L}|\mathbf{u}^{L}) \rho(\mathbf{u}^{l})}{\prod_{l=1}^{L} \rho(\mathbf{f}^{L}|\mathbf{u}^{L}) q(\mathbf{u}^{l})} \right].$$

$$= \sum_{i=1}^{N} \mathbb{E}_{q} [\log \rho(y_{i}|f_{i}^{L})] - \sum_{l=1}^{L} \mathsf{KL}(q(\mathbf{u}^{l})|\rho(\mathbf{u}^{l})).$$

Based on minimizing
$$KL(q(\lbrace \mathbf{u}^l, \mathbf{f}^l \rbrace_{l=1}^L) | p(\lbrace \mathbf{u}^l, \mathbf{f}^l \rbrace_{l=1}^L | \mathbf{y}))$$

Equivalent to maximizing the lower bound on $\log p(y)$:

$$\mathcal{L} = \mathbb{E}_{q} \left[\log \frac{\prod_{i=1}^{N} p(y_{i}|f_{i}^{L}) \prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{L}) p(\mathbf{u}^{l})}{\prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{L}) q(\mathbf{u}^{l})} \right].$$

$$= \sum_{i=1}^{N} \mathbb{E}_{q} [\log p(y_{i}|f_{i}^{L})] - \sum_{l=1}^{L} \mathsf{KL}(q(\mathbf{u}^{l})|p(\mathbf{u}^{l})).$$

• Suitable for stochastic optimization.

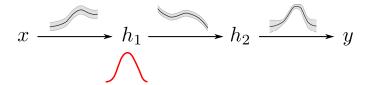
Based on minimizing
$$KL(q(\lbrace \mathbf{u}^l, \mathbf{f}^l \rbrace_{l=1}^L) | p(\lbrace \mathbf{u}^l, \mathbf{f}^l \rbrace_{l=1}^L | \mathbf{y}))$$

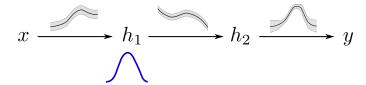
Equivalent to maximizing the lower bound on $\log p(y)$:

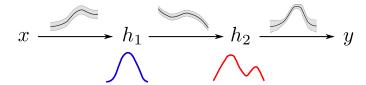
$$\mathcal{L} = \mathbb{E}_{q} \left[\log \frac{\prod_{i=1}^{N} p(y_{i}|f_{i}^{L}) \prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{L}) p(\mathbf{u}^{l})}{\prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{L}) q(\mathbf{u}^{l})} \right].$$

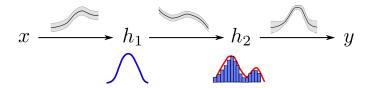
$$= \sum_{i=1}^{N} \mathbb{E}_{q} [\log p(y_{i}|f_{i}^{L})] - \sum_{l=1}^{L} \mathsf{KL}(q(\mathbf{u}^{l})|p(\mathbf{u}^{l})).$$

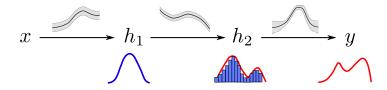
- Suitable for stochastic optimization.
- The expectations can be approximated by Monte Carlo.

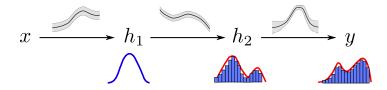




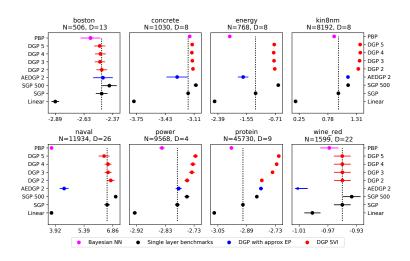




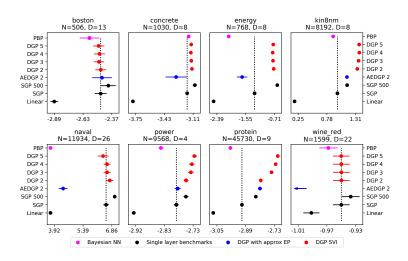




DGPs Experimental Results



DGPs Experimental Results



DGPs perform similar or better than the sparse GP and adding more layers does not seem to overfit!

There are several packages providing implementations of GPs:

GPy: Gaussian Processes in Python. Easy-to-use and extend.
 Supports multi-output GPs, different noise models and different approximate inference methods.

- GPy: Gaussian Processes in Python. Easy-to-use and extend.
 Supports multi-output GPs, different noise models and different approximate inference methods.
- GPML: Gaussian Processes in Matlab. No longer maintained.
 Implements the models and methods from the book "Gaussian Process for Machine learning".

- GPy: Gaussian Processes in Python. Easy-to-use and extend.
 Supports multi-output GPs, different noise models and different approximate inference methods.
- GPML: Gaussian Processes in Matlab. No longer maintained.
 Implements the models and methods from the book "Gaussian Process for Machine learning".
- GPflow: Gaussian processes in python using Tensorflow. Supports GPU acceleration. Focuses on variational inference and MCMC for approximate inference.

- GPy: Gaussian Processes in Python. Easy-to-use and extend.
 Supports multi-output GPs, different noise models and different approximate inference methods.
- GPML: Gaussian Processes in Matlab. No longer maintained.
 Implements the models and methods from the book "Gaussian Process for Machine learning".
- GPflow: Gaussian processes in python using Tensorflow. Supports GPU acceleration. Focuses on variational inference and MCMC for approximate inference.
- **GPyTorch**: Gaussian processes in python using PyTorch. Supports GPU acceleration. Also supports deep GPs.

Software for GPs and Deep GPs

There are several packages providing implementations of GPs:

- GPy: Gaussian Processes in Python. Easy-to-use and extend.
 Supports multi-output GPs, different noise models and different approximate inference methods.
- GPML: Gaussian Processes in Matlab. No longer maintained.
 Implements the models and methods from the book "Gaussian Process for Machine learning".
- GPflow: Gaussian processes in python using Tensorflow. Supports GPU acceleration. Focuses on variational inference and MCMC for approximate inference.
- **GPyTorch**: Gaussian processes in python using PyTorch. Supports GPU acceleration. Also supports deep GPs.

Deep GPs: uses doubly stochastic variational inference and GPflow.

There is several research going on on GP:

1 Scalable GPs: More efficient and accurate methods to approximate the full GP. Need not be based on inducing points.

- **1** Scalable GPs: More efficient and accurate methods to approximate the full GP. Need not be based on inducing points.
- **2 Flexible Approximations**: Most times parametric distributions are used for approximate inference. Non-Gaussian distributions such as those given by implicit models can have an advantage.

- **1 Scalable GPs**: More efficient and accurate methods to approximate the full GP. Need not be based on inducing points.
- 2 Flexible Approximations: Most times parametric distributions are used for approximate inference. Non-Gaussian distributions such as those given by implicit models can have an advantage.
- **3** Bayesian Neural Networks: Instead of taking the limit $H \to \infty$ perform approximate inference in the Neural Network model.

- **1** Scalable GPs: More efficient and accurate methods to approximate the full GP. Need not be based on inducing points.
- 2 Flexible Approximations: Most times parametric distributions are used for approximate inference. Non-Gaussian distributions such as those given by implicit models can have an advantage.
- **3** Bayesian Neural Networks: Instead of taking the limit $H \to \infty$ perform approximate inference in the Neural Network model.
- 4 Implicit Processes: Process that is easy to sample from. Generalization of GPs being potentially more flexible. Approximate inference in functional space with advantages over Bayesian NN.

- **1 Scalable GPs**: More efficient and accurate methods to approximate the full GP. Need not be based on inducing points.
- Plexible Approximations: Most times parametric distributions are used for approximate inference. Non-Gaussian distributions such as those given by implicit models can have an advantage.
- **3** Bayesian Neural Networks: Instead of taking the limit $H \to \infty$ perform approximate inference in the Neural Network model.
- 4 Implicit Processes: Process that is easy to sample from. Generalization of GPs being potentially more flexible. Approximate inference in functional space with advantages over Bayesian NN.
- **6 Convolutional GPs**: introduce prior knowledge about the latent function similar to that of convolutional neural networks.

Gaussian Processes:

Gaussian Processes:

 Powerful non-parametric models that can be used to describe latent functions.

Gaussian Processes:

- Powerful non-parametric models that can be used to describe latent functions.
- Provide a closed-form expression for the predictive distribution which takes into account prediction uncertainty.

Gaussian Processes:

- Powerful non-parametric models that can be used to describe latent functions.
- Provide a closed-form expression for the predictive distribution which takes into account prediction uncertainty.
- Scale to very large datasets and allow to introduce prior knowledge about the latent function.

Gaussian Processes:

- Powerful non-parametric models that can be used to describe latent functions.
- Provide a closed-form expression for the predictive distribution which takes into account prediction uncertainty.
- Scale to very large datasets and allow to introduce prior knowledge about the latent function.

Deep Gaussian Processes:

Gaussian Processes:

- Powerful non-parametric models that can be used to describe latent functions.
- Provide a closed-form expression for the predictive distribution which takes into account prediction uncertainty.
- Scale to very large datasets and allow to introduce prior knowledge about the latent function.

Deep Gaussian Processes:

More flexible models that address some of the GP limitations.

Gaussian Processes:

- Powerful non-parametric models that can be used to describe latent functions.
- Provide a closed-form expression for the predictive distribution which takes into account prediction uncertainty.
- Scale to very large datasets and allow to introduce prior knowledge about the latent function.

Deep Gaussian Processes:

More flexible models that address some of the GP limitations.

Thank you for your attention!

References

- M. Bauer, M. van der Wilk, C. E. Rasmussen. Understanding probabilistic sparse Gaussian process approximations. In Advances in neural information processing systems (pp. 1533-1541), 2016.
- Bui, T., Hernández-Lobato, D., Hernández-Lobato, J., Li, Y., Turner, R. (2016, June). Deep Gaussian processes for regression using approximate expectation propagation. In International conference on machine learning (pp. 1472-1481).
- Bui, T.D., Yan, J., Turner, R.E.: A unifying framework for Gaussian process pseudo-point approximations using power expectation propagation. Journal of Machine Learning Research 18, 104:1104:72 (2017).
- Csató, L., Opper, M. (2002). Sparse on-line Gaussian processes. Neural computation, 14(3), 641-668.
- Damianou, A., Lawrence, N.: Deep Gaussian processes. In: International Conference on Artificial Intelligence and Statistics. pp. 207215 (2013).
- Havasi, M., Hernández-Lobato, J.M., Murillo-Fuentes, J.J.: Inference in deep Gaussian processes using stochastic gradient Hamiltonian Monte Carlo. In: Advances in Neural Information Processing Systems, pp. 75177527 (2018).
- Hensman, J., Fusi, N., Lawrence, N.D.: Gaussian processes for big data. In: Uncertainty in Artificial Intellegence. pp. 282290 (2013)
- Hernández-Lobato, D., Hernández-Lobato, J. M. (2016, May). Scalable Gaussian process classification via expectation propagation. In Artificial Intelligence and Statistics (pp. 168-176). PMLR.
- Matthews, A. G. D. G., Hensman, J., Turner, R., Ghahramani, Z. (2016, May). On sparse variational methods and the Kullback-Leibler divergence between stochastic processes. In Artificial Intelligence and Statistics (pp. 231-239).
- Quiñonero-Candela, J., Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process regression.
 The Journal of Machine Learning Research. 6, 1939-1959.
- Salimbeni, H., Deisenroth, M.: Doubly stochastic variational inference for deep Gaussian processes. In: Advances in Neural Information Processing Systems. pp. 45884599 (2017).
- Snelson, E., Ghahramani, .: Sparse Gaussian processes using pseudo-inputs. In: Advances in Neural Information Processing Systems, pp. 12571264 (2006).
- Titsias, M.: Variational learning of inducing variables in sparse Gaussian processes. In: International Conference on Artificial Intelligence and Statistics, pp. 567574 (2000)
- Artificial Intelligence and Statistics. pp. 567574 (2009).

 M. Van der Wilk. C. E. Rasmussen, and J. Hensman. Convolutional Gaussian processes. In Advances in Neural
- Information Processing Systems, pages 28492858, 2017.
- Williams, C. K., Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4).
 Cambridge, MA: MIT press.