Importance Weighted Autoencoders with Uncertain Neural Network Weights

Daniel Hernández-Lobato

Computer Science Department Universidad Autónoma de Madrid

http://dhnzl.org, daniel.hernandez@uam.es

Joint work with Thang D. Bui, Yingzhen Li, José Miguel Hernández–Lobato and Rich E. Turner.

Given some data $\{\mathbf{x}_i\}_{i=1}^N$ we want to estimate $p(\mathbf{x})$.

Given some data $\{\mathbf{x}_i\}_{i=1}^N$ we want to estimate $p(\mathbf{x})$.

Generate additional data.

Given some data $\{\mathbf{x}_i\}_{i=1}^N$ we want to estimate $p(\mathbf{x})$.

- Generate additional data.
- Better understand the observed data.

Given some data $\{\mathbf{x}_i\}_{i=1}^N$ we want to estimate $p(\mathbf{x})$.

- Generate additional data.
- Better understand the observed data.

"What I cannot create. I do not understand."

—Richard Feynman

Given some data $\{\mathbf{x}_i\}_{i=1}^N$ we want to estimate $p(\mathbf{x})$.

- Generate additional data.
- Better understand the observed data.

"What I cannot create, I do not understand."

-Richard Feynman

Real Images

Given some data $\{\mathbf{x}_i\}_{i=1}^N$ we want to estimate $p(\mathbf{x})$.

- Generate additional data.
- Better understand the observed data.

"What I cannot create, I do not understand."

-Richard Feynman

Real Images

Generated Images

It may be easier to generate first a **latent variable z** and then the data x.

It may be easier to generate first a latent variable ${\bf z}$ and then the data ${\bf x}$.

It may be easier to generate first a latent variable ${\bf z}$ and then the data ${\bf x}$.

It may be easier to generate first a **latent variable z** and then the data x.

It may be easier to generate first a **latent variable z** and then the data x.

The latent variable z:

It may be easier to generate first a **latent variable z** and then the data x.

The latent variable z:

• Captures high-level information about x.

It may be easier to generate first a **latent variable z** and then the data x.

The latent variable z:

- Captures high-level information about x.
- Compressed representation of x.

It may be easier to generate first a **latent variable z** and then the data x.

The latent variable z:

- Captures high-level information about x.
- Compressed representation of x.

$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

We consider $p(\mathbf{z})$ is something simple we can sample from. Can we generate one \mathbf{x} similar to each $\{\mathbf{x}_i\}_{i=1}^N$ using a parametric $p(\mathbf{x}|\mathbf{z};\theta)$?

We consider $p(\mathbf{z})$ is something simple we can sample from. Can we generate one \mathbf{x} similar to each $\{\mathbf{x}_i\}_{i=1}^N$ using a parametric $p(\mathbf{x}|\mathbf{z};\theta)$?

Yes, if $p(x|z; \theta)$ has enough flexibility.

We consider $p(\mathbf{z})$ is something simple we can sample from. Can we generate one \mathbf{x} similar to each $\{\mathbf{x}_i\}_{i=1}^N$ using a parametric $p(\mathbf{x}|\mathbf{z};\theta)$?

Yes, if $p(x|z; \theta)$ has enough flexibility.

$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 $\mathbf{x} = \mathbf{z}/10 + \mathbf{z}/|\mathbf{z}|$

We consider $p(\mathbf{z})$ is something simple we can sample from. Can we generate one \mathbf{x} similar to each $\{\mathbf{x}_i\}_{i=1}^N$ using a parametric $p(\mathbf{x}|\mathbf{z};\theta)$?

Yes, if $p(x|z;\theta)$ has enough flexibility.

$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 $\mathbf{x} = \mathbf{z}/10 + \mathbf{z}/|\mathbf{z}|$

Let $p(\mathbf{x}|\mathbf{z};\theta)$ be a factorizing Gaussian with parameters given by a MLP.

$$p(\mathbf{x}|\mathbf{z};\theta) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_d(\mathbf{z};\theta), \sigma_d^2(\mathbf{z};\theta))$$

Let $p(\mathbf{x}|\mathbf{z};\theta)$ be a factorizing Gaussian with parameters given by a MLP.

$$p(\mathbf{x}|\mathbf{z};\theta) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_d(\mathbf{z};\theta), \sigma_d^2(\mathbf{z};\theta))$$

We want to find θ to maximize $p(x_i)$ for i = 1, ..., N.

Let $p(\mathbf{x}|\mathbf{z};\theta)$ be a factorizing Gaussian with parameters given by a MLP.

$$p(\mathbf{x}|\mathbf{z};\theta) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_d(\mathbf{z};\theta), \sigma_d^2(\mathbf{z};\theta))$$

We want to find θ to maximize $p(x_i)$ for i = 1, ..., N.

Challenges:

• $p(\mathbf{x}_i) = \int p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})d\mathbf{z}$ is intractable.

Let $p(\mathbf{x}|\mathbf{z};\theta)$ be a factorizing Gaussian with parameters given by a MLP.

$$p(\mathbf{x}|\mathbf{z};\theta) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_d(\mathbf{z};\theta), \sigma_d^2(\mathbf{z};\theta))$$

We want to find θ to maximize $p(\mathbf{x}_i)$ for i = 1, ..., N.

Challenges:

- $p(\mathbf{x}_i) = \int p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})d\mathbf{z}$ is intractable.
- $p(\mathbf{x}_i) = \frac{1}{n} \sum_{j=1}^{n} p(\mathbf{x}_i | \mathbf{z}_j)$, $\mathbf{z}_j \sim p(\mathbf{z})$ demands extremely large n.

Let $p(\mathbf{x}|\mathbf{z};\theta)$ be a factorizing Gaussian with parameters given by a MLP.

$$p(\mathbf{x}|\mathbf{z};\theta) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_d(\mathbf{z};\theta), \sigma_d^2(\mathbf{z};\theta))$$

We want to find θ to maximize $p(\mathbf{x}_i)$ for i = 1, ..., N.

Challenges:

- $p(\mathbf{x}_i) = \int p(\mathbf{x}_i | \mathbf{z}; \theta) p(\mathbf{z}) d\mathbf{z}$ is intractable.
- $p(\mathbf{x}_i) = \frac{1}{n} \sum_{j=1}^{n} p(\mathbf{x}_i | \mathbf{z}_j)$, $\mathbf{z}_j \sim p(\mathbf{z})$ demands extremely large n.

The Variational Autoencoder (Kingma and Welling, 2014) solves this:

Let $p(\mathbf{x}|\mathbf{z};\theta)$ be a factorizing Gaussian with parameters given by a MLP.

$$p(\mathbf{x}|\mathbf{z};\theta) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_d(\mathbf{z};\theta), \sigma_d^2(\mathbf{z};\theta))$$

We want to find θ to maximize $p(\mathbf{x}_i)$ for i = 1, ..., N.

Challenges:

- $p(\mathbf{x}_i) = \int p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})d\mathbf{z}$ is intractable.
- $p(\mathbf{x}_i) = \frac{1}{n} \sum_{j=1}^{n} p(\mathbf{x}_i | \mathbf{z}_j)$, $\mathbf{z}_j \sim p(\mathbf{z})$ demands extremely large n.

The Variational Autoencoder (Kingma and Welling, 2014) solves this:

Samples values of z that are likely to have produced x_i.

Let $p(\mathbf{x}|\mathbf{z};\theta)$ be a factorizing Gaussian with parameters given by a MLP.

$$p(\mathbf{x}|\mathbf{z};\theta) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_d(\mathbf{z};\theta), \sigma_d^2(\mathbf{z};\theta))$$

We want to find θ to maximize $p(x_i)$ for i = 1, ..., N.

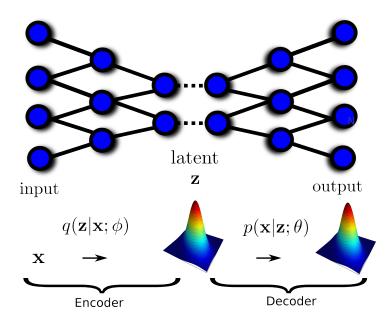
Challenges:

- $p(\mathbf{x}_i) = \int p(\mathbf{x}_i | \mathbf{z}; \theta) p(\mathbf{z}) d\mathbf{z}$ is intractable.
- $p(\mathbf{x}_i) = \frac{1}{n} \sum_{j=1}^{n} p(\mathbf{x}_i | \mathbf{z}_j)$, $\mathbf{z}_j \sim p(\mathbf{z})$ demands extremely large n.

The Variational Autoencoder (Kingma and Welling, 2014) solves this:

- Samples values of z that are likely to have produced x_i.
- Adds a recognition network $q(\mathbf{z}|\mathbf{x};\phi)$ that approximates $p(\mathbf{z}|\mathbf{x})$.

Variational Autoencoder



The VAE maximizes $\log p(\mathbf{x}_i)$ w.r.t θ in an **approximate way**:

The VAE maximizes $\log p(\mathbf{x}_i)$ w.r.t θ in an **approximate way**:

$$\begin{split} \log p(\mathbf{x}_i) &= \log \int p(\mathbf{x}_i|\mathbf{z};\theta) p(\mathbf{z}) d\mathbf{z} = \log \int p(\mathbf{x}_i|\mathbf{z};\theta) p(\mathbf{z}) \frac{q(\mathbf{z}|\mathbf{x}_i;\phi)}{q(\mathbf{z}|\mathbf{x}_i;\phi)} d\mathbf{z} \\ &= \log \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)} \left[\frac{p(\mathbf{x}_i|\mathbf{z};\theta) p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}_i;\phi)} \right] \\ &\geq \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)} \left[\log \frac{p(\mathbf{x}_i|\mathbf{z};\theta) p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}_i;\phi)} \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)} \left[\log p(\mathbf{x}_i|\mathbf{z};\theta) \right] - \mathsf{KL} \left(q(\mathbf{z}|\mathbf{x}_i;\phi) | p(\mathbf{z}) \right) \equiv \mathcal{L}(\mathbf{x}_i;\theta,\phi) \end{split}$$

The VAE maximizes $\log p(\mathbf{x}_i)$ w.r.t θ in an **approximate way**:

$$\begin{split} \log p(\mathbf{x}_i) &= \log \int p(\mathbf{x}_i|\mathbf{z};\theta) p(\mathbf{z}) d\mathbf{z} = \log \int p(\mathbf{x}_i|\mathbf{z};\theta) p(\mathbf{z}) \frac{q(\mathbf{z}|\mathbf{x}_i;\phi)}{q(\mathbf{z}|\mathbf{x}_i;\phi)} d\mathbf{z} \\ &= \log \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)} \left[\frac{p(\mathbf{x}_i|\mathbf{z};\theta) p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}_i;\phi)} \right] \\ &\geq \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)} \left[\log \frac{p(\mathbf{x}_i|\mathbf{z};\theta) p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}_i;\phi)} \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)} \left[\log p(\mathbf{x}_i|\mathbf{z};\theta) \right] - \mathsf{KL} \left(q(\mathbf{z}|\mathbf{x}_i;\phi) | p(\mathbf{z}) \right) \equiv \mathcal{L}(\mathbf{x}_i;\theta,\phi) \end{split}$$

The **difference** is the KL divergence between $q(\mathbf{z}|\mathbf{x}_i;\phi)$ and $p(\mathbf{z}|\mathbf{x}_i)$.

$$\log p(\mathbf{x}_i) - \mathsf{KL}(q(\mathbf{z}|\mathbf{x}_i;\phi)|p(\mathbf{z}|\mathbf{x}_i)) = \mathcal{L}(\mathbf{x}_i;\theta,\phi)$$

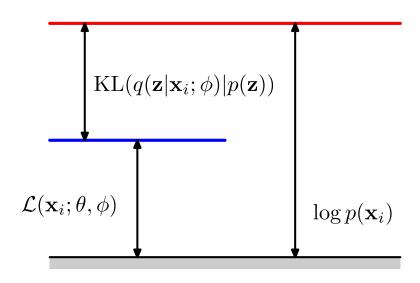
The VAE maximizes $\log p(\mathbf{x}_i)$ w.r.t θ in an **approximate way**:

$$\begin{split} \log p(\mathbf{x}_i) &= \log \int p(\mathbf{x}_i | \mathbf{z}; \theta) p(\mathbf{z}) d\mathbf{z} = \log \int p(\mathbf{x}_i | \mathbf{z}; \theta) p(\mathbf{z}) \frac{q(\mathbf{z} | \mathbf{x}_i; \phi)}{q(\mathbf{z} | \mathbf{x}_i; \phi)} d\mathbf{z} \\ &= \log \mathbb{E}_{q(\mathbf{z} | \mathbf{x}_i; \phi)} \left[\frac{p(\mathbf{x}_i | \mathbf{z}; \theta) p(\mathbf{z})}{q(\mathbf{z} | \mathbf{x}_i; \phi)} \right] \\ &\geq \mathbb{E}_{q(\mathbf{z} | \mathbf{x}_i; \phi)} \left[\log \frac{p(\mathbf{x}_i | \mathbf{z}; \theta) p(\mathbf{z})}{q(\mathbf{z} | \mathbf{x}_i; \phi)} \right] \\ &= \mathbb{E}_{q(\mathbf{z} | \mathbf{x}_i; \phi)} \left[\log p(\mathbf{x}_i | \mathbf{z}; \theta) \right] - \mathsf{KL} \left(q(\mathbf{z} | \mathbf{x}_i; \phi) | p(\mathbf{z}) \right) \equiv \mathcal{L}(\mathbf{x}_i; \theta, \phi) \end{split}$$

The **difference** is the KL divergence between $q(\mathbf{z}|\mathbf{x}_i; \phi)$ and $p(\mathbf{z}|\mathbf{x}_i)$.

$$\log p(\mathbf{x}_i) - \mathsf{KL}(q(\mathbf{z}|\mathbf{x}_i;\phi)|p(\mathbf{z}|\mathbf{x}_i)) = \mathcal{L}(\mathbf{x}_i;\theta,\phi)$$

Maximizing $\mathcal{L}(\mathbf{x}_i; \theta, \phi)$ w.r.t ϕ makes $\mathsf{KL}(q(\mathbf{z}|\mathbf{x}_i; \phi)|p(\mathbf{z}|\mathbf{x}_i))$ very small, and maximizing w.r.t. θ should improve $\log p(\mathbf{x}_i)$.



Given a dataset $\{\mathbf{x}_i\}_{i=1}^N$ the objective is:

$$\sum_{i=1}^{N} \mathcal{L}(\mathbf{x}_i; \theta, \phi) = \sum_{i=1}^{N} \left(\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i; \phi)} \left[\log p(\mathbf{x}_i|\mathbf{z}; \theta) \right] - \mathsf{KL}(q(\mathbf{z}|\mathbf{x}_i; \phi)|p(\mathbf{z})) \right)$$

Given a dataset $\{x_i\}_{i=1}^N$ the objective is:

$$\sum_{i=1}^{N} \mathcal{L}(\mathbf{x}_i; \theta, \phi) = \sum_{i=1}^{N} \left(\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i; \phi)} \left[\log p(\mathbf{x}_i|\mathbf{z}; \theta) \right] - \mathsf{KL}(q(\mathbf{z}|\mathbf{x}_i; \phi)|p(\mathbf{z})) \right)$$

Each term $\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)}[\log p(\mathbf{x}_i|\mathbf{z};\theta)]$ is approximated using **black-box** VI:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)}\left[\log p(\mathbf{x}_i|\mathbf{z};\theta)\right] \approx \frac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{x}_i|\mathbf{z}^{(m)};\theta), \quad \mathbf{z}^{(m)} \sim q(\mathbf{z}|\mathbf{x}_i;\phi)$$

Given a dataset $\{\mathbf{x}_i\}_{i=1}^N$ the objective is:

$$\sum_{i=1}^{N} \mathcal{L}(\mathbf{x}_i; \theta, \phi) = \sum_{i=1}^{N} \left(\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i; \phi)} \left[\log p(\mathbf{x}_i|\mathbf{z}; \theta) \right] - \mathsf{KL}(q(\mathbf{z}|\mathbf{x}_i; \phi)|p(\mathbf{z})) \right)$$

Each term $\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)}[\log p(\mathbf{x}_i|\mathbf{z};\theta)]$ is approximated using **black-box** VI:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)}\left[\log p(\mathbf{x}_i|\mathbf{z};\theta)\right] \approx \frac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{x}_i|\mathbf{z}^{(m)};\theta), \quad \mathbf{z}^{(m)} \sim q(\mathbf{z}|\mathbf{x}_i;\phi)$$

The **reparametrization trick** allows to compute gradients w.r.t ϕ :

$$\mathbf{z}^{(m)} = \mathbf{L}(\mathbf{x}_i; \phi)^{\mathsf{T}} \epsilon + \mu(\mathbf{x}_i; \phi), \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Given a dataset $\{\mathbf{x}_i\}_{i=1}^N$ the objective is:

$$\sum_{i=1}^{N} \mathcal{L}(\mathbf{x}_i; \theta, \phi) = \sum_{i=1}^{N} \left(\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i; \phi)} \left[\log p(\mathbf{x}_i|\mathbf{z}; \theta) \right] - \mathsf{KL}(q(\mathbf{z}|\mathbf{x}_i; \phi)|p(\mathbf{z})) \right)$$

Each term $\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)}[\log p(\mathbf{x}_i|\mathbf{z};\theta)]$ is approximated using **black-box** VI:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)}\left[\log p(\mathbf{x}_i|\mathbf{z};\theta)\right] \approx \frac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{x}_i|\mathbf{z}^{(m)};\theta), \quad \mathbf{z}^{(m)} \sim q(\mathbf{z}|\mathbf{x}_i;\phi)$$

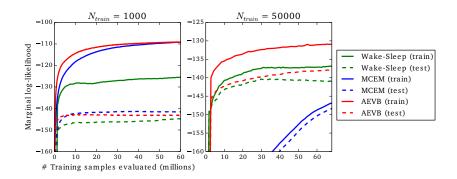
The **reparametrization trick** allows to compute gradients w.r.t ϕ :

$$\mathsf{z}^{(m)} = \mathsf{L}(\mathsf{x}_i;\phi)^\mathsf{T} \epsilon + \mu(\mathsf{x}_i;\phi), \quad \epsilon \sim \mathcal{N}(\mathsf{0},\mathsf{I})$$

We can use minibatches and stochastic gradients for training! Furthermore, all MLP operations can be done in the GPU.

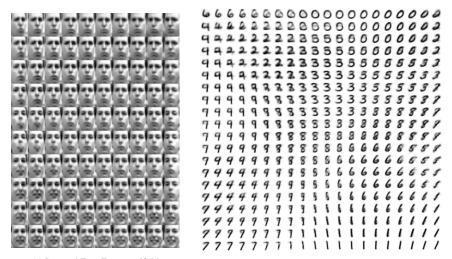
Results on the MNIST Dataset

100 hidden units in the MLP and 3 latent variables:



2D Manifolds Learned by the VAE

The z's are transformed using the inverse CDF of the standard Gaussian.



(a) Learned Frey Face manifold

(b) Learned MNIST manifold

(Kingma and Welling, 2014)

Generated samples from the MNIST

```
86/78/4828 1165764672 1831385738
9681968319 8594692162 8382192538
1111369199 6103288133 35994795/3
8908691963
            2168912041 1918933492
9233331386
            5191018359 1736430263
6998616666
            6561491758
                        5970583845
9526651899 (343923470
                        6943618502
           4582970169 8496507365
9981312823
            6194272393
                        7476303601
0461232088
9754434851
            2 6 4 5 6 0 9 9 9 8
                        2 + 2 0 4 3 7 9 5 0
```

- (a) 2-D latent space
- (b) 5-D latent space
- (c) 10-D latent space

Improves the VAE by considering a **tighter lower bound** on $p(\mathbf{x}_i)$.

Improves the VAE by considering a **tighter lower bound** on $p(x_i)$.

Consider an **importance sampling** estimate of $p(x_i)$:

Improves the VAE by considering a **tighter lower bound** on $p(\mathbf{x}_i)$.

Consider an **importance sampling** estimate of $p(\mathbf{x}_i)$:

$$\log p(\mathbf{x}_i) = \log \int p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})d\mathbf{z} = \log \int p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})\frac{q(\mathbf{z}|\mathbf{x}_i;\phi)}{q(\mathbf{z}|\mathbf{x}_i;\phi)}d\mathbf{z}$$

$$= \log \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)}\left[\frac{p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}_i;\phi)}\right] \approx \log \frac{1}{k} \sum_{m=1}^{k} \frac{p(\mathbf{x}_i|\mathbf{z}^{(m)};\theta)p(\mathbf{z}^{(m)})}{q(\mathbf{z}^{(m)}|\mathbf{x}_i;\phi)}$$

Improves the VAE by considering a **tighter lower bound** on $p(\mathbf{x}_i)$.

Consider an **importance sampling** estimate of $p(\mathbf{x}_i)$:

$$\log p(\mathbf{x}_i) = \log \int p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})d\mathbf{z} = \log \int p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})\frac{q(\mathbf{z}|\mathbf{x}_i;\phi)}{q(\mathbf{z}|\mathbf{x}_i;\phi)}d\mathbf{z}$$

$$= \log \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)}\left[\frac{p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}_i;\phi)}\right] \approx \log \frac{1}{k} \sum_{m=1}^k \frac{p(\mathbf{x}_i|\mathbf{z}^{(m)};\theta)p(\mathbf{z}^{(m)})}{q(\mathbf{z}^{(m)}|\mathbf{x}_i;\phi)}$$

On expectation that estimate is a **lower bound** on $\log p(\mathbf{x}_i)$:

$$\mathcal{L}_k(\mathbf{x}_i; \theta, \phi) = \mathbb{E}\left[\log \frac{1}{k} \sum_{m=1}^k w_m\right] \leq \log \mathbb{E}\left[\frac{1}{k} \sum_{m=1}^k w_m\right] = \log p(\mathbf{x}_i)$$

Improves the VAE by considering a **tighter lower bound** on $p(\mathbf{x}_i)$.

Consider an **importance sampling** estimate of $p(\mathbf{x}_i)$:

$$\log p(\mathbf{x}_i) = \log \int p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})d\mathbf{z} = \log \int p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})\frac{q(\mathbf{z}|\mathbf{x}_i;\phi)}{q(\mathbf{z}|\mathbf{x}_i;\phi)}d\mathbf{z}$$

$$= \log \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_i;\phi)}\left[\frac{p(\mathbf{x}_i|\mathbf{z};\theta)p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}_i;\phi)}\right] \approx \log \frac{1}{k} \sum_{m=1}^k \frac{p(\mathbf{x}_i|\mathbf{z}^{(m)};\theta)p(\mathbf{z}^{(m)})}{q(\mathbf{z}^{(m)}|\mathbf{x}_i;\phi)}$$

On expectation that estimate is a **lower bound** on $\log p(\mathbf{x}_i)$:

$$\mathcal{L}_k(\mathbf{x}_i; \theta, \phi) = \mathbb{E}\left[\log \frac{1}{k} \sum_{m=1}^k w_m\right] \leq \log \mathbb{E}\left[\frac{1}{k} \sum_{m=1}^k w_m\right] = \log p(\mathbf{x}_i)$$

If k=1 we obtain the VAE. k>1 can only improve the bound. Optimization is done as in the VAE.

(Burda et al., 2016)

Experimental Results

		MNIST				OMNIGLOT			
		VAE		IWAE		VAE		IWAE	
# stoch.	$\frac{k}{}$	NLL	active	NLL	active	NLL	active	NLL	active
1	1 5 50	86.76 86.47 86.35	19 20 20	86.76 85.54 84.78	19 22 25	108.11 107.62 107.80	28 28 28	108.11 106.12 104.67	28 34 41
2	1 5 50	85.33 85.01 84.78	16+5 17+5 17+5	85.33 83.89 82.90	16+5 21+5 26+7	107.58 106.31 106.30	28+4 30+5 30+5	107.56 104.79 103.38	30+5 38+6 44+7

(Burda et al., 2016)

We consider more flexible networks in the IWAE by introducing uncertainty in the neural network parameters θ and ϕ .

We consider more flexible networks in the IWAE by introducing uncertainty in the neural network parameters θ and ϕ .

$$p(\mathbf{x}|\mathbf{z}) = \int p(\mathbf{x}|\mathbf{z}; heta) q(heta) d heta \,, \qquad q(\mathbf{z}|\mathbf{x}) = \int q(\mathbf{z}|\mathbf{x}; \phi) q(\phi) d\phi \,,$$

We consider more flexible networks in the IWAE by introducing uncertainty in the neural network parameters θ and ϕ .

$$p(\mathbf{x}|\mathbf{z}) = \int p(\mathbf{x}|\mathbf{z}; heta) q(heta) d heta \,, \qquad q(\mathbf{z}|\mathbf{x}) = \int q(\mathbf{z}|\mathbf{x}; \phi) q(\phi) d\phi \,,$$

 $q(\theta)$ and $q(\phi)$ are Gaussians with parameters $\Omega = \{\mu_{\theta}, \sigma_{\theta}^2, \mu_{\phi}, \sigma_{\phi}^2\}$.

We consider more flexible networks in the IWAE by introducing uncertainty in the neural network parameters θ and ϕ .

$$p(\mathbf{x}|\mathbf{z}) = \int p(\mathbf{x}|\mathbf{z}; heta) q(heta) d heta \,, \qquad q(\mathbf{z}|\mathbf{x}) = \int q(\mathbf{z}|\mathbf{x}; \phi) q(\phi) d\phi \,,$$

 $q(\theta)$ and $q(\phi)$ are Gaussians with parameters $\Omega = \{\mu_{\theta}, \sigma_{\theta}^2, \mu_{\phi}, \sigma_{\phi}^2\}$.

$$q(\mathbf{z}|\mathbf{x};\phi)$$
 $p(\mathbf{x}|\mathbf{z};\theta)$ $q(\mathbf{z}|\mathbf{x})$ $p(\mathbf{x}|\mathbf{z})$

Given a dataset $\{x_i\}_{i=1}^N$ the **objective** is:

$$\sum_{i=1}^{N} \mathcal{L}_{k}(\mathbf{x}_{i}; \Omega) = \sum_{i=1}^{N} \mathbb{E} \left[\log \sum_{m=1}^{k} \frac{p(\mathbf{x}_{i} | \mathbf{z}^{(m)}; \theta^{(m)}) p(\mathbf{z}^{(m)})}{q(\mathbf{z}^{(m)} | \mathbf{x}_{i}; \phi^{(m)})} \right]$$

where $\mathbf{z}^{(m)}$, $\theta^{(m)}$ and $\phi^{(m)}$ are sampled from $q(\mathbf{z}|\mathbf{x}_i;\phi^{(m)})$, $q(\theta)$ and $q(\phi)$.

Given a dataset $\{\mathbf{x}_i\}_{i=1}^N$ the **objective** is:

$$\sum_{i=1}^{N} \mathcal{L}_{k}(\mathbf{x}_{i}; \Omega) = \sum_{i=1}^{N} \mathbb{E} \left[\log \sum_{m=1}^{k} \frac{p(\mathbf{x}_{i} | \mathbf{z}^{(m)}; \theta^{(m)}) p(\mathbf{z}^{(m)})}{q(\mathbf{z}^{(m)} | \mathbf{x}_{i}; \phi^{(m)})} \right]$$

where $\mathbf{z}^{(m)}$, $\theta^{(m)}$ and $\phi^{(m)}$ are sampled from $q(\mathbf{z}|\mathbf{x}_i;\phi^{(m)})$, $q(\theta)$ and $q(\phi)$.

The expectation $\mathbb{E}[\cdot]$ is approximated by one Monte Carlo sample.

Given a dataset $\{x_i\}_{i=1}^N$ the **objective** is:

$$\sum_{i=1}^{N} \mathcal{L}_{k}(\mathbf{x}_{i}; \Omega) = \sum_{i=1}^{N} \mathbb{E} \left[\log \sum_{m=1}^{k} \frac{p(\mathbf{x}_{i} | \mathbf{z}^{(m)}; \theta^{(m)}) p(\mathbf{z}^{(m)})}{q(\mathbf{z}^{(m)} | \mathbf{x}_{i}; \phi^{(m)})} \right]$$

where $\mathbf{z}^{(m)}$, $\theta^{(m)}$ and $\phi^{(m)}$ are sampled from $q(\mathbf{z}|\mathbf{x}_i;\phi^{(m)})$, $q(\theta)$ and $q(\phi)$.

The expectation $\mathbb{E}[\cdot]$ is approximated by one Monte Carlo sample.

We use stochastic gradients and the **local reparametrization trick**:

Given a dataset $\{x_i\}_{i=1}^N$ the **objective** is:

$$\sum_{i=1}^{N} \mathcal{L}_k(\mathbf{x}_i; \Omega) = \sum_{i=1}^{N} \mathbb{E} \left[\log \sum_{m=1}^{k} \frac{p(\mathbf{x}_i | \mathbf{z}^{(m)}; \theta^{(m)}) p(\mathbf{z}^{(m)})}{q(\mathbf{z}^{(m)} | \mathbf{x}_i; \phi^{(m)})} \right]$$

where $\mathbf{z}^{(m)}$, $\theta^{(m)}$ and $\phi^{(m)}$ are sampled from $q(\mathbf{z}|\mathbf{x}_i;\phi^{(m)})$, $q(\theta)$ and $q(\phi)$.

The expectation $\mathbb{E}[\cdot]$ is approximated by one Monte Carlo sample.

We use stochastic gradients and the **local reparametrization trick**:

1 Sample the NN activations $\mathbf{A} = \mathbf{X}\mathbf{W} + \mathbf{b}\mathbf{1}^{\mathsf{T}}$, which are Gaussian.

Given a dataset $\{x_i\}_{i=1}^N$ the **objective** is:

$$\sum_{i=1}^{N} \mathcal{L}_k(\mathbf{x}_i; \Omega) = \sum_{i=1}^{N} \mathbb{E} \left[\log \sum_{m=1}^{k} \frac{p(\mathbf{x}_i | \mathbf{z}^{(m)}; \theta^{(m)}) p(\mathbf{z}^{(m)})}{q(\mathbf{z}^{(m)} | \mathbf{x}_i; \phi^{(m)})} \right]$$

where $\mathbf{z}^{(m)}$, $\theta^{(m)}$ and $\phi^{(m)}$ are sampled from $q(\mathbf{z}|\mathbf{x}_i;\phi^{(m)})$, $q(\theta)$ and $q(\phi)$.

The expectation $\mathbb{E}[\cdot]$ is approximated by one Monte Carlo sample.

We use stochastic gradients and the local reparametrization trick:

- **1** Sample the NN activations $\mathbf{A} = \mathbf{X}\mathbf{W} + \mathbf{b}\mathbf{1}^\mathsf{T}$, which are Gaussian.
- 2 Instead of sampling $M \times H \times D$ variables, we sample $M \times H$.

(Kingma et al., 2015)

Experimental Results: MNIST and Omniglot

- We consider 1-layer MLP with 400 units and 40 latent variables.
- We compare with a model that considers uncertainty only in ϕ .
- We set the number of importance samples k = 25.

Average test log-likelihood for each method.

Dataset	IWAE	IWAEU	IWAEU _{rec}	
MNIST	-95.182±0.022	-94.346 ± 0.025	-94.709±0.025	
Omniglot	-118.771±0.035	-118.540 ± 0.049	-118.647 ± 0.031	

Conclusions:

1 The VAE and the IWAE are powerful generative models based on latent variables for unsupervised machine learning.

Conclusions:

- 1 The **VAE** and the **IWAE** are powerful generative models based on latent variables for unsupervised machine learning.
- 2 The performance of the IWAE can be **improved** by considering **random neural network weights** in both networks.

Conclusions:

- 1 The VAE and the IWAE are powerful generative models based on latent variables for unsupervised machine learning.
- 2 The performance of the IWAE can be improved by considering random neural network weights in both networks.

Future Work:

Carry out extra experiments to explore if the gains are also obtained with bigger and deeper neural networks.

Conclusions:

- 1 The VAE and the IWAE are powerful generative models based on latent variables for unsupervised machine learning.
- 2 The performance of the IWAE can be improved by considering random neural network weights in both networks.

Future Work:

- Carry out extra experiments to explore if the gains are also obtained with bigger and deeper neural networks.
- 2 Combine with black-box-alpha for training and explore other models (e.g., ladder variational autoencoders).

References

- D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference on Learning Representations, 2014.
- Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. In International Conference on Learning Representations, 2016.
- D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization trick. In Advances in Neural Information Processing Systems. 2015.
- D. P. Kingma and J. L Ba. Adam: A method for stochastic optimization. In International Conference on Learning Representations, 2015.
- C. K. Sonderby, T. Raiko, L. Maaloe, S. K. Sonderby, and O. Winther. Ladder variational autoencoders. 2016. arXiv:1602.02282.