

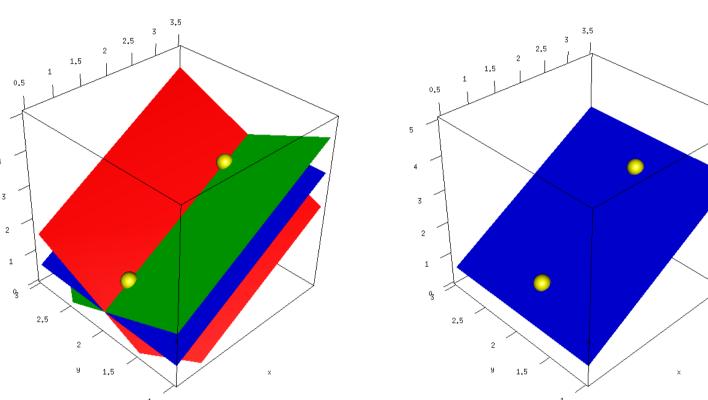
A Probabilistic Model for Dirty Multi-task Feature Selection

Daniel Hernández-Lobato¹, José Miguel Hernández-Lobato^{2,3}, Zoubin Ghahramani³ ¹Universidad Autónoma de Madrid. ²Harvard University. ³Cambridge University.

1. Introduction

We focus on linear regression problems that are under-determined, i.e., we have the same or more attributes than observations ($n \leq d$).

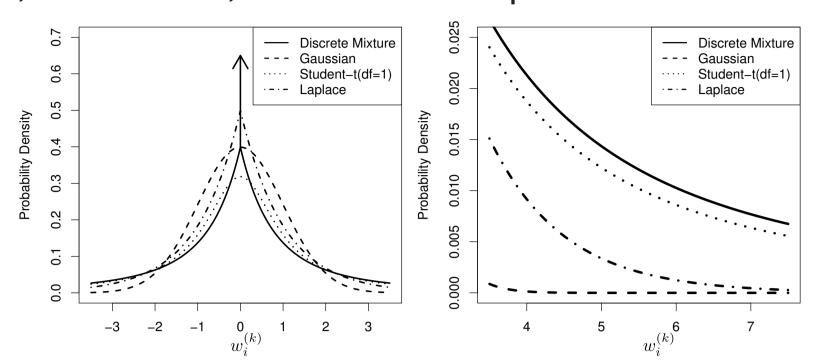
$$y = Xw + \epsilon, \quad \epsilon \sim \mathcal{N}(0, I\sigma^2).$$



A typical regularization assumes **sparsity** in **w**.

2. Sparsity Assumption

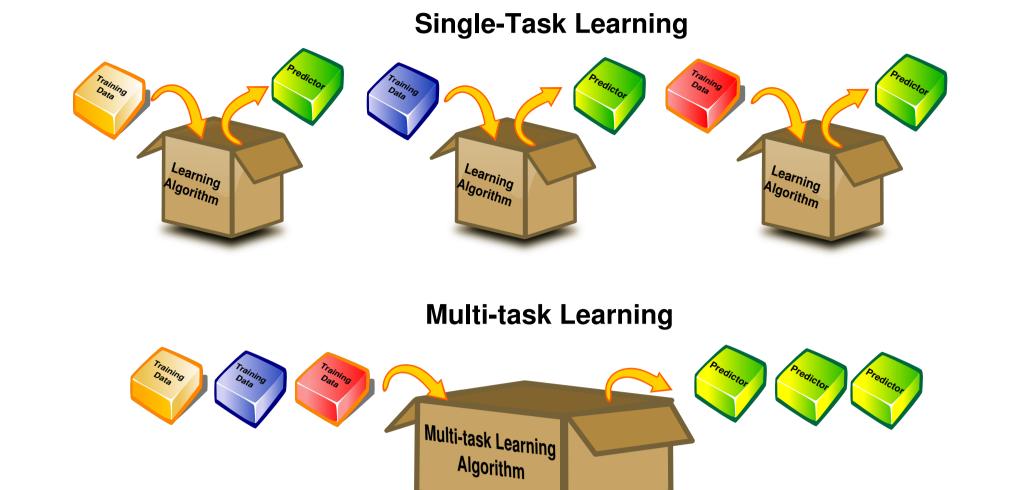
Introduced by setting a sparse enforcing prior for w, e.g., Laplace, Student's T, Horseshoe or spike-and-slab.



Discrete-mixture prior: $p(w_i) = \rho \delta_0 + (1 - \rho)\pi(w_i)$. $\pi\left(w_{i}\right) = \int \mathcal{N}(w_{i}|0,\lambda_{i}^{2}) \frac{\lambda_{i}}{\left(\lambda_{i}^{2}+1\right)^{\frac{3}{2}}} d\lambda_{i} = \frac{1}{\sqrt{2\pi}} \left(1-|w_{i}| \frac{\Phi(-|w_{i}|)}{\mathcal{N}(w_{i}|0,1)}\right)$ is the Strawderman-Bergen prior which has a closed form

3. Multi-task Learning

There may be several learning tasks available for induction. Multi-task methods try to exploit similarities among tasks to improve the induction process.

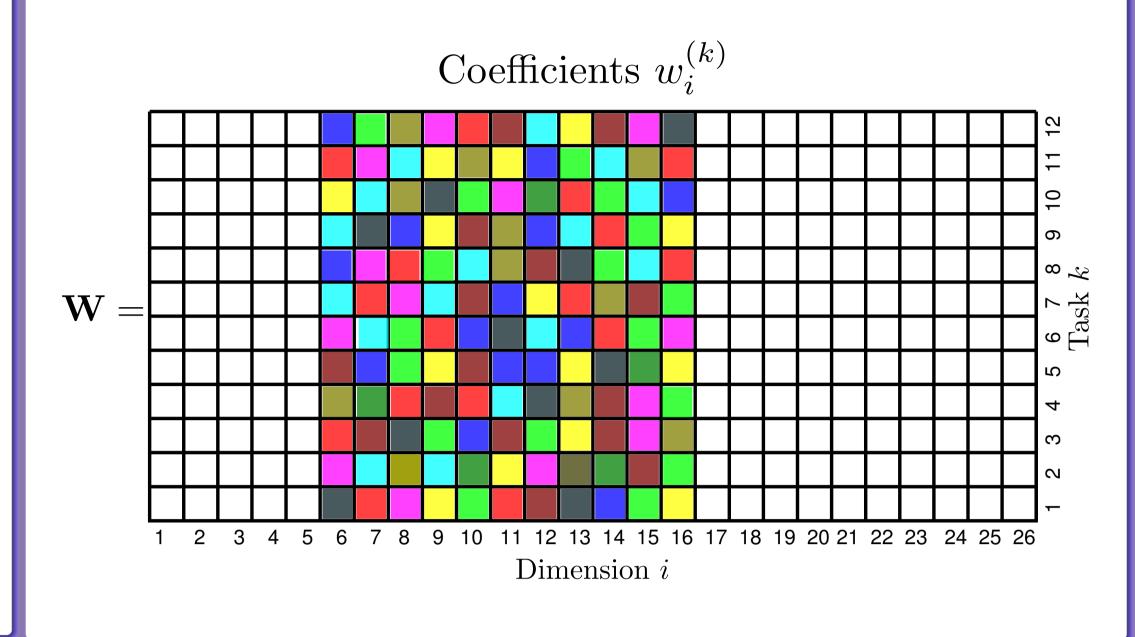


 $\gamma_i = 1$

 $-\omega_k=1$

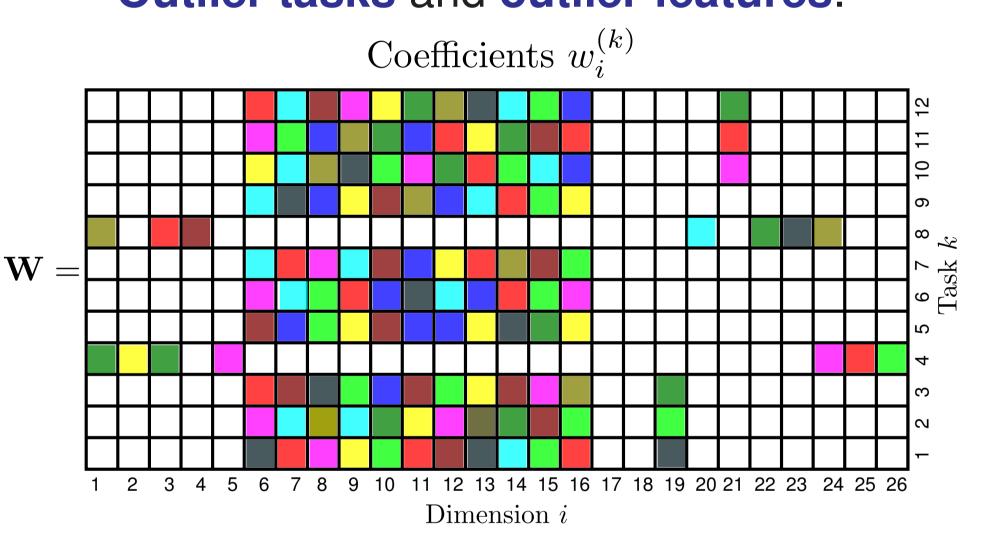
4. Typical Hypothesis

Tasks share relevant and irrelevant features.



5. Something More Reasonable

Outlier tasks and outlier features.

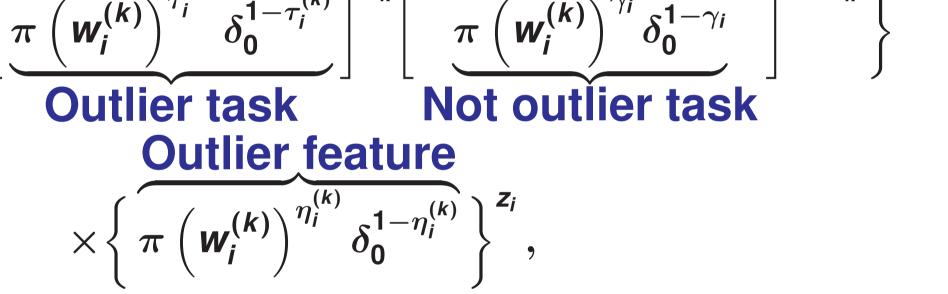


6. Robust Prior Distribution

convolution with the Gaussian distribution.

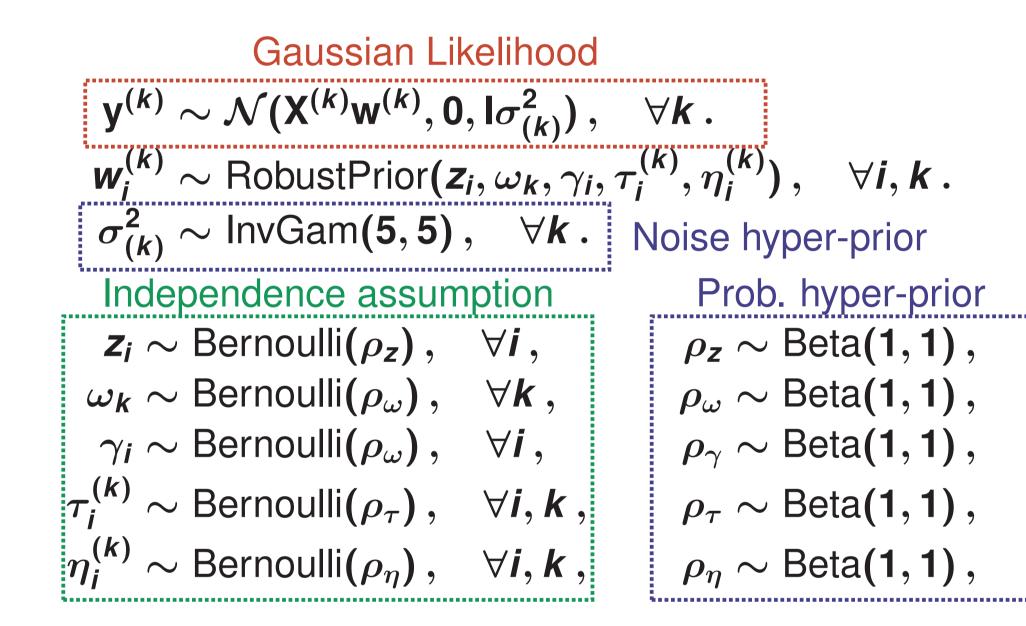
Define $\Omega = \{\mathbf{z}, \omega, \gamma, \{\tau^{(k)}\}_{k=1}^K, \{\eta^{(k)}\}_{k=1}^K\}$. The prior for **W** is $p(\mathbf{W}|\Omega) = \prod_{i=1}^d \prod_{k=1}^K p(\mathbf{w}_i^{(k)}|\Omega)$, with $p(\mathbf{w}_i^{(k)}|\Omega) =$

Not outlier feature



where δ_0 is a point of probability mass at the origin.

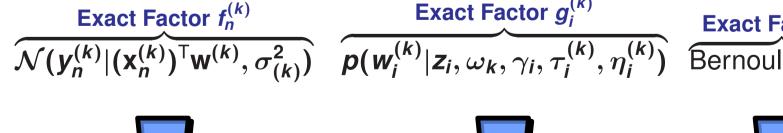
5. Dirty Multi-task Feature Selection

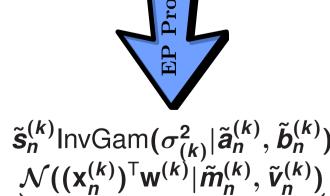


7. Expectation Propagation

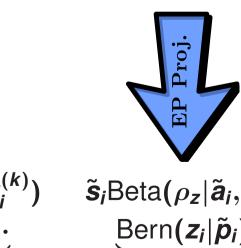
Approximates each factor in $p(Y, W, \Omega, \rho, \sigma^2 | \mathcal{X})$ with an unormalized distribution inside an exponential family \mathcal{F} . $\mathcal{F} \to \mathsf{Gaussians}$ on **W**, Bernoullis on Ω , I. Gammas on σ^2 and Betas on ρ .

Example of factors that need approximation:





 $\tilde{\mathbf{s}}_{i}^{(k)}\mathcal{N}(\mathbf{w}_{i}^{(k)}|\tilde{m}_{i}^{(k)},\tilde{\mathbf{v}}_{i}^{(k)})$ $\mathsf{Bern}(\mathbf{z}_i|\tilde{\rho}_{\mathbf{z}}^{(i,k)})\cdots$ Approx. Factor $\tilde{f}_n^{(k)}$



8. Experiments with Synthetic Data

N = 200, d = 2,000 and we use for W the pattern above. $K = 12, \, \sigma_{(k)}^2 = 0.5, \, \forall k \text{ and } w_i^{(k)} \sim \text{Student(df} = 5).$

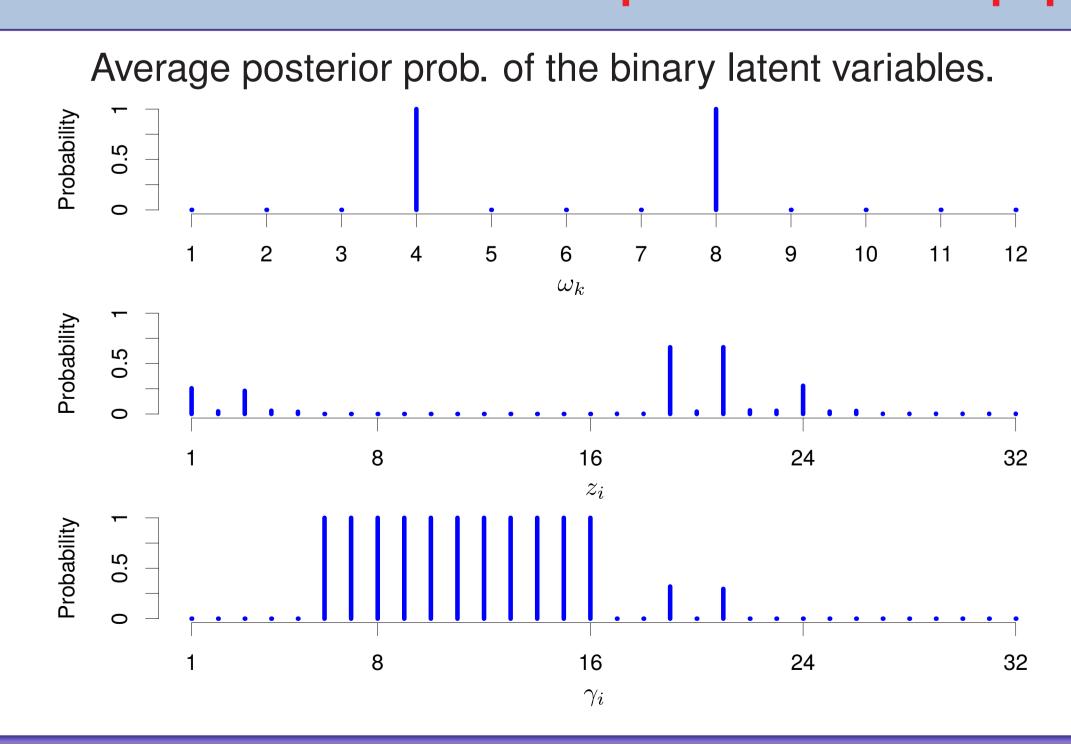
> Method Test RMSE Rec. Error Training Time $0.73 \pm 0.04 \ 0.22 \pm 0.02 \ 21.29 \pm 0.2$ 0.86 ± 0.05 0.50 ± 0.03 150.35 ± 10.0 0.90 ± 0.05 0.56 ± 0.03 95.42 ± 5.0 0.77 ± 0.06 0.32 ± 0.04 $2\cdot10^3\pm4\cdot10^2$ 0.81 ± 0.06 0.37 ± 0.04 6.7 ± 1.7

> > $0.78 \pm 0.07 \ 0.33 \pm 0.06$

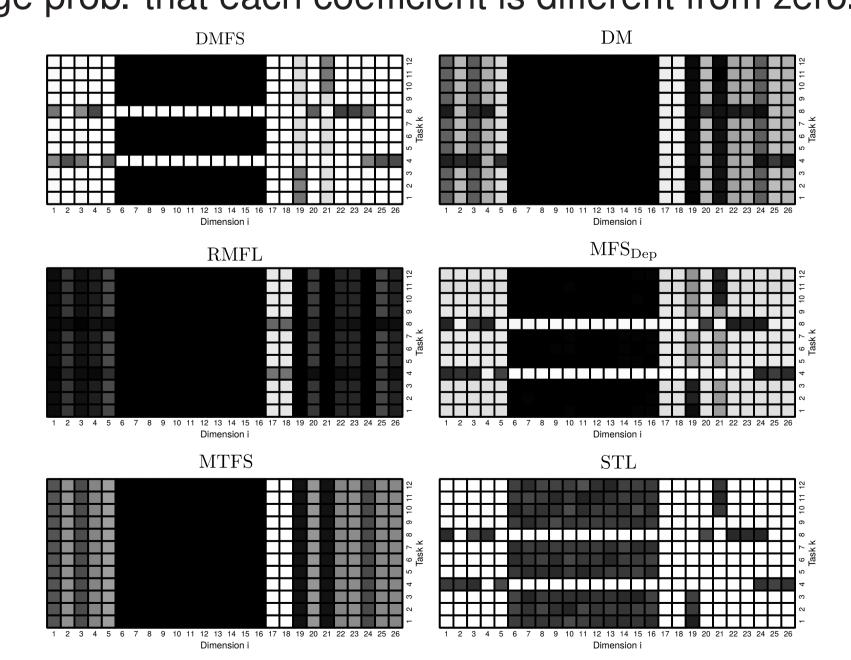
MFS and STL are particular cases of DMFS.

Several other experiments in the paper!

 $z_i = 1$



Average prob. that each coefficient is different from zero.



9. Summary and Conclusions of the Research Work

(1) - Most methods for multi-task feature selection assume jointly relevant and irrelevant and i features to be arbitrarily relevant or irrelevant. (3) - Exact inference is infeasible under such a prior. However, a quadrature-free expectation propagation algorithm is possible. (4) - Several experiments show gains in the prediction performance and in the identification of relevant features for prediction. (5) - Our new prior is useful to better understand the data because it allows to identify outlier tasks and outlier features.

 4.76 ± 0.4

http://dhnzl.org/ daniel.hernandez@uam.es