Approximate Inference in Practice Microsoft's Xbox TrueSkillTM

Daniel Hernández-Lobato

Universidad Autónoma de Madrid

2014

- Introduction
- 2 The Probabilistic Model
- 3 Approximate Inference
- 4 Results

- Introduction
- 2 The Probabilistic Model
- 3 Approximate Inference
- 4 Results

Introduction

Competition is a key aspect of humans.

- Innate in most persons since a young age.
- Used as a principle in most sports: soccer, basketball, etc.

Ratings used in games for fair competition.

- ELO system: Estimates the skill level of a chess player.
- ATP system: Estimates the skill level of a tennis player.
- Used for matchmaking in tournaments.
- Generate a players ranking.

Online gaming poses additional challenges.

- Infer from a few match outcomes player skills.
- Consider the possibility of teams with different number of players.

Questions that Arise in Online Gaming Skill Rating

- **Observed data:** Match outcomes of k teams with n_1, \ldots, n_k players each, in the form of a ranking with potential ties between teams.
- Information we would like to obtain:
 - Skills of each player s_1, \ldots, s_k . If $s_i > s_j$ player i is expected to beat player j.
 - Global ranking among players.
 - Fair matches between players and teams of players.

Successfully achieved by Microsoft's Xbox TrueSkillTM

R. Herbrich, T. Minka and T. Graepel, TrueSkillTM: A Bayesian Skill Rating System. Advances in Neural Information Processing Systems 19, 2006.

- 1 Introduction
- 2 The Probabilistic Model
- 3 Approximate Inference
- 4 Results

TrueSkillTM Observed and Latent Variables

Latent Variables:

- Skill s_i for player $i: p(s_i) = \mathcal{N}(s_i|\mu_i, \sigma_i^2)$.
- Performance p_i of player i: $p(p_i|s_i) = \mathcal{N}(p_i|s_i, \beta^2)$.
- Performance t_j of team j: $p(t_j | \{p_i : i \in A_j\}) = \delta(t_j \sum_{i \in A_j} p_i)$.

Observed Variables:

• Match outcome involving k teams: Rank r_i for each team j.

$$p(r_1,\ldots,r_k|t_1,\ldots,t_k) = \mathbb{I}(t_{r_1} > t_{r_2} > \cdots > t_{r_k})$$

Thus, $r_j < r_{j+1}$ implies $t_j > t_{j+1}$.

The parameters of the model are β^2 , μ_i and σ_i^2 .

TrueSkillTM Example

We consider a game with 3 teams $A_1=\{1\}$, $A_2=\{2,3\}$, $A_3=\{4\}$.

Results: $\mathbf{r} = (1, 2, 3)$. Team \mathcal{A}_1 wins followed by \mathcal{A}_2 and \mathcal{A}_3 .

Define $d_1 = t_1 - t_2$ and $d_2 = t_2 - t_3$:

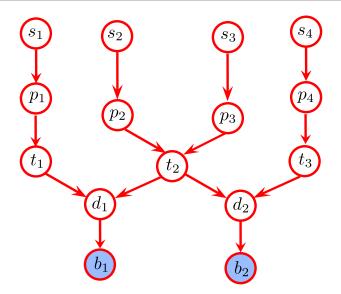
$$p(d_1|t_1,t_2) = \delta(d_1-t_1+t_2), \qquad p(d_2|t_2,t_3) = \delta(d_2-t_2+t_3).$$

The result implies $d_1 > 0$ and $d_2 > 0$. Use transitivity!

Thus, $\mathbf{r} = (1, 2, 3)$ is equivalent to observing $b_1 = 1$ and $b_2 = 1$ where:

$$p(b_1|d_1) = egin{cases} 1 & ext{if } d_1 > 0 \,, \ 0 & ext{if } d_1 \leq 0 \,. \end{cases} \quad p(b_2|d_2) = egin{cases} 1 & ext{if } d_2 > 0 \,, \ 0 & ext{if } d_2 \leq 0 \,. \end{cases}$$

Bayesian Network for the Example



Note that we observe $b_1 = 1$ and $b_2 = 1$.

TrueSkillTM Bayesian Online Learning

Inference involves computing a posterior given a match outcome:

$$p(\mathbf{s},\mathbf{p},\mathbf{t},\mathbf{d},|\mathbf{b}) = \frac{p(\mathbf{s},\mathbf{b},\mathbf{t},\mathbf{p},\mathbf{d})}{p(\mathbf{b})} = \frac{p(\mathbf{b}|\mathbf{d})p(\mathbf{d}|\mathbf{t})p(\mathbf{t}|\mathbf{p})p(\mathbf{p}|\mathbf{s})p(\mathbf{s})}{p(\mathbf{b})}$$

We marginalize out \mathbf{t} and \mathbf{p} and \mathbf{d} to get the marginal posterior of \mathbf{s} .

Bayesian Online Learning

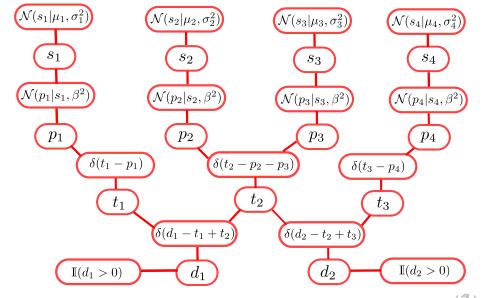
The posterior after one match is used as the prior for the next match.

$$\{\mu_i(0),\sigma_i^2(0)\} \xrightarrow{\mathsf{Match}\ \#1} \{\mu_i(1),\sigma_i^2(1)\} \xrightarrow{\mathsf{Match}\ \#2} \{\mu_i(2),\sigma_i^2(2)\}$$

Marginal Posterior is not Gaussian!

- 1 Introduction
- 2 The Probabilistic Model
- 3 Approximate Inference
- 4 Results

Bethe Cluster Graph for the Example



Message Passing Algorithm

We pass messages in the Bethe cluster graph until convergence to compute the posterior marginals of s_1, \ldots, s_4 .

$$\delta_{i \to j}(s_{i,j}) = \left\{ \int \psi_i(\mathbf{c}_i) \left[\prod_{k \in \mathsf{Nb}_i} \delta_{k \to i}(s_{k,i}) \right] d\left(\mathbf{c}_i \setminus s_{i,j}\right) \right\} / \delta_{j \to i}(s_{i,j}).$$

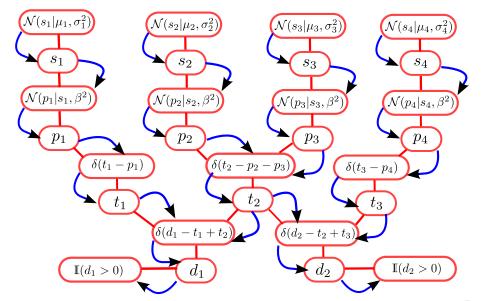
where $s_{i,j}$ are the variables in the sepset of edge $i \to j$. This is the same rule as the one used in Belief Propagation.

The posterior marginals for s_1, \ldots, s_4 are given:

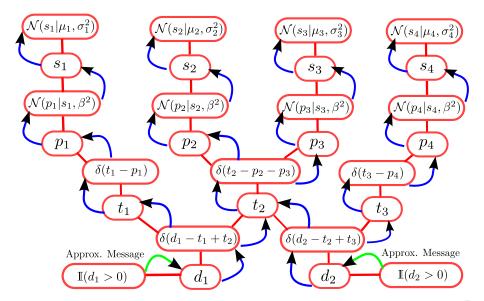
$$p(s_i|\mathbf{b}) \propto \psi_i(s_i) \prod_{k \in \mathsf{Nb}_i} \delta_{k \to i}(s_i) = \mathcal{N}(s_i|\mu_i, \sigma_i^2) \delta_{k \to i}(s_i).$$

All messages are Gaussian except for the two bottom messages!

Bethe Cluster Graph: Message Passing



Bethe Cluster Graph: Message Passing



Approximate Messages: Projection Step

We consider the case of the first message. The first step is to approximate the marginal by projecting into the Gaussian family:

$$\psi_i(d_1)\delta_{j\to i}(d_1) = \mathbb{I}(d_1>0)\mathcal{N}(d_1|\hat{m},\hat{v}).$$

For this, we compute the log of the normalization constant:

$$\log Z = \log \int \mathbb{I}(d_1 > 0) \mathcal{N}(d_1 | \hat{m}, \hat{v}) dd_1 = \log \Phi\left(\frac{\hat{m}}{\sqrt{\hat{v}}}\right).$$

We can obtain the mean and the variance of $\mathbb{I}(d_1>0)\mathcal{N}(d_1|\hat{m},\hat{v})$ by computing the derivatives with respect to \hat{m} and $\hat{v}!$

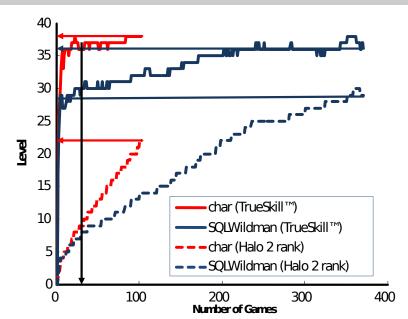
Assume m and v are the mean and the variance. The approximate message is then:

$$\delta_{i o j}(d_1) \propto rac{\mathcal{N}(d_1|m,v)}{\mathcal{N}(d_1|\hat{m},\hat{v})}\,.$$

The computation of the other approximate message is equivalent.

- 1 Introduction
- 2 The Probabilistic Model
- 3 Approximate Inference
- 4 Results

Convergence Speed



Applications to Online Gaming

Leader-board of players:

- Provides a global ranking of all players.
- The rank is conservative: $\mu_i 3\sigma_i$.

• Matchmaking:

- For players: Most uncertain outcome is better.
- For inference: Most uncertain outcome is most informative.
- Good for both players and the model.

Matchmaking: Probability of winning or loosing

We assume player i wants to play against player j. What is the probability of winning?

$$\begin{split} p(p_i > p_j) &= \int \mathbb{I}(p_i - p_j > 0) p(p_j | s_j) p(s_j) p(p_i | s_i) p(s_i) dp_i dp_j ds_i ds_j \\ &= \int \mathbb{I}(p_i - p_j > 0) \mathcal{N}(p_j | s_j, \beta^2) \mathcal{N}(p_i | s_i, \beta^2) \cdot \\ &\cdot \mathcal{N}(s_j | \mu_j, \sigma_j^2) \mathcal{N}(s_i | \mu_i, \sigma_i^2) dp_i dp_j ds_i ds_j \\ &= \int \mathbb{I}(p_i - p_j > 0) \mathcal{N}(p_j | \mu_j, \sigma_i^2 + \beta^2) \mathcal{N}(p_i | \mu_i, \sigma_i^2 + \beta^2) dp_i dp_j \\ &= \Phi\left(\frac{\mu_i - \mu_j}{\sqrt{\sigma_i^2 + \sigma_j^2 + 2\beta^2}}\right) \,. \end{split}$$

Game Over!