Advanced Topics in Ensemble Learning ECML/PKDD 2012 Tutorial

Daniel Hernández-Lobato², Gonzalo Martínez-Muñoz ², Ioannis Partalas ¹

¹ Equipe Apprentissage: Modèles et Algorithmes Laboratoire d' Informatique de Grenoble

> ²Computer Science Department, Universidad Autónoma de Madrid

Outline

- Parallel Ensembles
 - Detection of Instances that are Difficult to Classify
 - Classification in the Infinite Ensemble Limit
 - Optimal Ensemble Size

(AMA-LIG, UAM) Ensemble Learning

Outline

- Parallel Ensembles
 - Detection of Instances that are Difficult to Classify
 - Classification in the Infinite Ensemble Limit
 - Optimal Ensemble Size

(AMA-LIG, UAM) Ensemble Learning

Parallel Ensembles I

General Category of Ensembles Methods:

The ensemble members are built on **independent** realizations of a randomized learning algorithm:

$$h_t(\cdot) \equiv h_t(\cdot|\mathcal{D}, \boldsymbol{\theta}_t)$$
.

The ensemble output is computed by majority voting:

$$H_T(\mathbf{x}) = \underset{c_k}{\operatorname{arg max}} \sum_{t=1}^T I(h_t(\mathbf{x}) = c_k), \quad c_k \in \mathcal{C} = \{c_k\}_{k=1}^K.$$

Examples: Bagging, Random Forest, Class-switching, Extra-trees, Sub-bagging, Randomizing Outputs, Rotation Forest, Random Subspaces, Randomization, etc.

Parallel Ensembles II

Important Property:

When **conditioned to the training data** \mathcal{D} , the predictions of two ensemble classifiers for a given test instance \mathbf{x} are **independent**:

$$\mathcal{P}(\textit{h}_\textit{i}(\textbf{x}) = \textit{c}', \textit{h}_\textit{j}(\textbf{x}) = \textit{c}'') = \mathcal{P}(\textit{h}_\textit{i}(\textbf{x}) = \textit{c}') \\ \mathcal{P}(\textit{h}_\textit{j}(\textbf{x}) = \textit{c}'') \quad \textit{i} \neq \textit{j}, \textit{c}', \textit{c}'' \in \mathcal{C} \,.$$

Does not Imply Independent Prediction Errors in General:

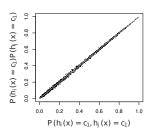
Both classifiers may **err** in the **same data instances**:

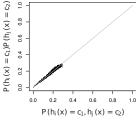
$$\mathbb{E}_{\mathbf{x},y} \left[\mathcal{P}(h_i(\mathbf{x}) \neq y, h_j(\mathbf{x}) \neq y) \right] \neq \mathbb{E}_{\mathbf{x},y} \left[\mathcal{P}(h_i(\mathbf{x}) \neq y) \right] \mathbb{E}_{\mathbf{x},y} \left[\mathcal{P}(h_i(\mathbf{x}) \neq y) \right] .$$

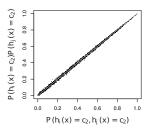
Ensemble Learning 5 / 46

Empirical Validation I

Random Forest: Breast Cancer Dataset.

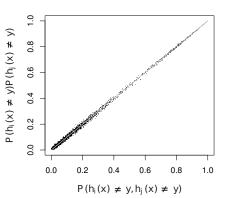


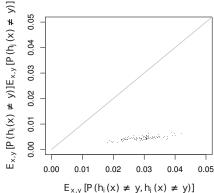




Empirical Validation II

Random Forest: Breast Cancer Dataset.





Applications

The independence of the predictions for a fixed test instance has **different uses** in parallel ensemble methods:

- Identify instances that are difficult to classify by the ensemble.
- Make inference about the prediction of ensembles of infinite size.
- Estimate an adequate size for the ensemble.

Outline

- Parallel Ensembles
 - Detection of Instances that are Difficult to Classify
 - Classification in the Infinite Ensemble Limit
 - Optimal Ensemble Size

(AMA-LIG, UAM) Ensemble Learning 9 / 46

Ensemble Prediction I

For a fixed instance **x** the predictions of the ensemble members follow a **multinomial** distribution. This distribution is **binomial** when $C = \{c_1, c_2\}$.

$$\mathcal{P}(\mathbf{T}|\boldsymbol{\pi}(\mathbf{x})) = \frac{T!}{T_1! T_2!} \pi_1(\mathbf{x})^{T_1} \pi_2(\mathbf{x})^{T_2},$$

where $\mathbf{T} = (T_1, T_2)$ encodes the predictions for \mathbf{x} and $\pi(\mathbf{x}) = (\pi_1(\mathbf{x}), \pi_2(\mathbf{x}))$ summarizes the prob. of observing c_1 and c_2 , respectively.

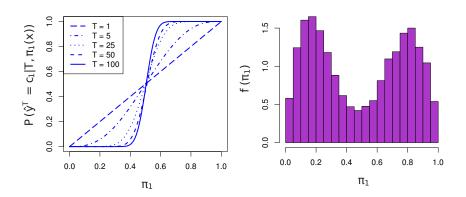
The probability that the ensemble assigns a particular class label is:

$$\mathcal{P}(\hat{\mathbf{y}}^{\mathsf{T}} = \mathbf{c}_1 | \mathsf{T}, \mathbf{x}) = \sum_{\mathsf{T}_1 > \mathsf{T}_2} \mathcal{P}(\mathsf{T} | \boldsymbol{\pi}(\mathbf{x})) = \mathbf{I}_{\pi_1(\mathbf{x})} \left(\lfloor \frac{\mathsf{T}}{2} \rfloor + 1, \, \mathsf{T} - \lfloor \frac{\mathsf{T}}{2} \rfloor \right) \,,$$

where $I_p(a, b)$ is the regularized incomplete beta function.

4₫→

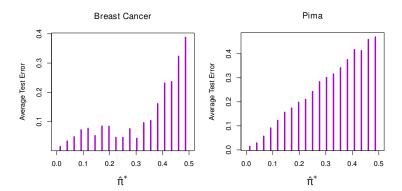
Ensemble Prediction II



As the ensemble size increases it is more and more certain the ensemble prediction. The samples of π_1 are obtained using Random Forest and the classification problem is *Twonorm*.

(AMA-LIG, UAM) Ensemble Learning 11 / 46

Dependence of the Ensemble Error



As the estimate $\hat{\pi}^{\star} = \min(\hat{\pi}_1, \hat{\pi}_2)$ increases, the ensemble error **grows** and approaches 1/2. The estimates are obtained using Random Forest.

4 🗗 ト

(AMA-LIG, UAM) Ensemble Learning 12 / 46

A Statistical Test to Identify Difficult Instances

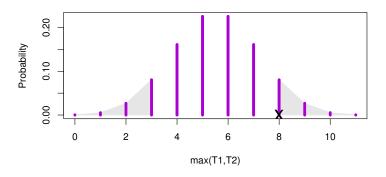
Motivation:

- For the examples with $\pi_1 = \pi_2 = 1/2$ we know that $\mathcal{P}(\hat{\mathbf{y}}^T = \mathbf{c}_1 | T, \mathbf{x}) = 1/2$, **independently** of the value of T.
- These instances are located near the decision boundary of the problem and are misclassified with prob $\approx 50\%$.
- Since **T** follows a binomial distribution, we can use a **binomial test** to evaluate the null hypothesis that $\pi_1 = \pi_2 = 1/2$ and obtain a p-value (Hernández-Lobato *et al.*, 2012).

4 🗗 ト

(AMA-LIG, UAM) Ensemble Learning 13 / 46

Binomial Test I

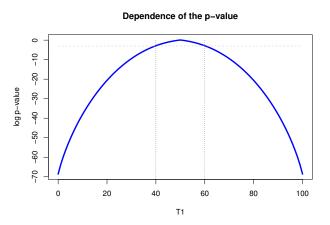


The p-value is the prob. of observing under the null-hypothesis a result at **least as unlikely** as the predictions observed $\mathbf{T} = (T_1, T_2)$:

p-value =
$$2I_{\frac{1}{2}}(T - \min(T_1, T_2), 1 + \min(T_1, T_2))$$
.

14 / 46 Ensemble Learning

Binomial Test II



When the p-value is above 5% there is **evidence** that **x** is **difficult** to classify. For T = 100, when $\min(T_1, T_2)$ is between 40 and 50 the p-value exceeds 5%.

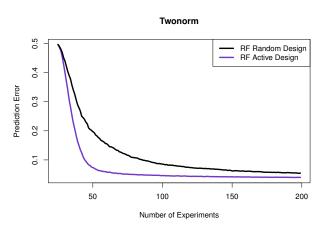
(AMA-LIG, UAM) Ensemble Learning 15 / 46

Experiments: Results for Random Forest

Dataset	% difficult	Error Difficult	Error Rest	Total Error
Breast Cancer	$0.6 {\pm} 0.4$	46.6 ± 37.4	$2.7{\pm}0.7$	$3.0 {\pm} 0.7$
Ionosphere	$1.5 {\pm} 1.0$	43.4 ± 36.1	$6.2 {\pm} 1.5$	$6.8 {\pm} 1.6$
Pima	5.9 ± 1.2	49.8 ± 9.9	22.5 ± 1.7	24.1 ± 1.6
Sonar	$9.5{\pm}3.0$	47.5 ± 16.6	16.9 ± 4.7	19.9 ± 4.5

(AMA-LIG, UAM) Ensemble Learning 16 / 46

Sequential Experimental Design using Ensembles



When the design matrix **X** is **sequentially generated** by including the instances that are **most difficult** to classify, RF shows a **steeper decrease** of the generalization error. (Freund *et al.*, 1997) (Abe and Mamitsuka, 1998)

Summary

- The independence property of parallel ensembles is used to analyze the ensemble prediction.
- A statistical test can be used to identify difficult instances.
- On these instances the ensemble error is typically around 50%.
- The fraction of difficult instances is strongly **problem dependent**.
- Gives a natural justification for active learning using ensembles.

4 🗗 ▶

(AMA-LIG, UAM) Ensemble Learning 18 / 46

Outline

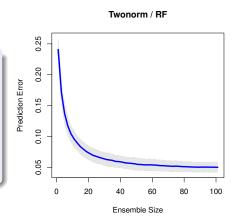
- Parallel Ensembles
 - Detection of Instances that are Difficult to Classify
 - Classification in the Infinite Ensemble Limit
 - Optimal Ensemble Size

(AMA-LIG, UAM) Ensemble Learning 19 / 46

Classification in the Infinite Ensemble Limit I

Parallel Ensembles:

- The ensemble error decreases with the ensemble size.
- The improvements become progressively smaller.
- The costs of the ensemble increase linearly with the size.



We try to estimate the prediction of an ensemble of **infinite size** based on the predictions of a **finite set of classifiers** (Hernández-Lobato *et al.*, 2011).

Classification in the Infinite Ensemble Limit II

For a fixed instance **x** the predictions of the ensemble members follow a multinomial distribution:

$$\mathcal{P}(\mathbf{t}|\boldsymbol{\pi}(\mathbf{x})) = \frac{t!}{t_1!t_2!\cdots t_{\mathcal{K}}!}\pi_1(\mathbf{x})^{t_1}\pi_2(\mathbf{x})^{t_2}\cdots \pi_{\mathcal{K}}(\mathbf{x})^{t_{\mathcal{K}}},$$

where $\mathbf{t} = (t_1, t_2, \dots, t_K)$ encodes the predictions for \mathbf{x} and $\pi(\mathbf{x}) = (\pi_1(\mathbf{x}), \pi_2(\mathbf{x}), \cdots, \pi_K(\mathbf{x}))$ summarizes the prob. of observing each class label.

When $t \to \infty$, the class outputted by the ensemble is

$$\hat{\mathbf{y}}^{\infty} = \mathbf{c}_k$$
 with $\arg\max_{\mathbf{k}} \ \pi_{\mathbf{k}}(\mathbf{x})$.

Thus, $\pi(\mathbf{x})$ fully determines the asymptotic ensemble prediction.

< A → 21 / 46

(AMA-LIG, UAM) Ensemble Learning

Inference on the Infinite Ensemble Prediction I

After observing t votes, under the assumption of a uniform prior for $\pi(\mathbf{x})$, Bayes' theorem gives:

$$\mathcal{P}(\boldsymbol{\pi}(\mathbf{x})|\mathbf{t}) = \frac{\Gamma(\sum_{k=1}^{K} t_k + K)}{\prod_{k=1}^{K} \Gamma(t_k + 1)} \pi_1(\mathbf{x})^{t_1} \pi_1(\mathbf{x})^{t_1} \cdots \pi_K(\mathbf{x})^{t_K},$$

i.e. a **Dirichlet distribution** of order K with parameters $t_1 + 1, t_2 + 1, \dots, t_K + 1$.

We can use this distribution to make inference on the asymptotic ensemble prediction:

$$\mathcal{P}(\hat{\mathbf{y}}^{\infty} = \mathbf{c}_k | \mathbf{t}) = \mathcal{P}\left(\bigcap_{i \neq k} \pi_k(\mathbf{x}) > \pi_i(\mathbf{x}) | \mathbf{t}\right).$$

Unfortunately, this probability is **difficult to compute** in general.

< A →

Inference on the Infinite Ensemble Prediction II

In the binary case, *i.e.* $C = \{c_1, c_2\}$, this probability is:

$$\mathcal{P}(\hat{\mathbf{y}}^{\infty} = \mathbf{c}_1 | \mathbf{t}) = \mathcal{P}(\pi_1(\mathbf{x}) > \pi_2(\mathbf{x}) | \mathbf{t}) = \mathbf{I}_{\frac{1}{2}}(t_2 + 1, t_1 + 1)$$
.

In the multi-class setting, there is no closed-form expression. We use a **lower bound** which guarantees a conservative estimation:

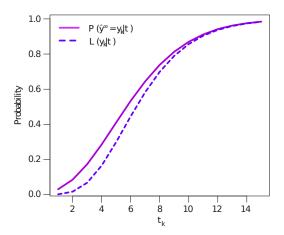
$$\mathcal{P}(\hat{\mathbf{y}}^{\infty} = \mathbf{c}_k | \mathbf{t}) \ge \mathcal{L}(\mathbf{c}_k | \mathbf{t}) = \prod_{i \ne k} \mathcal{P}(\pi_k(\mathbf{x}) > \pi_i(\mathbf{x}) | \mathbf{t}) = \prod_{i \ne k} I_{\frac{1}{2}}(t_i + 1, t_k + 1) ,$$

where we have used that $\mathcal{P}(\pi_k(\mathbf{x}) > \pi_i(\mathbf{x}) | \pi_k(\mathbf{x}) > \pi_j(\mathbf{x})) \geq \mathcal{P}(\pi_k(\mathbf{x}) > \pi_i(\mathbf{x}))$. In binary classification problems $\mathcal{L}(c_k|\mathbf{t})$ gives the **exact** result.

4₫→

(AMA-LIG, UAM) Ensemble Learning 23 / 46

Lower Bound vs The Exact Post. Probability



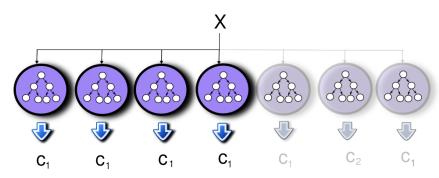
When $\mathcal{P}(\hat{y}^{\infty} = c_1 | \mathbf{t})$ is **large** the lower bound becomes more and more **accurate**. $\{t_i : j \neq i\} = \{5, 3, 2, 1\}$.

4 🗇 →

(AMA-LIG, UAM) Ensemble Learning 24 / 46

Dynamic Pruning Criterion I

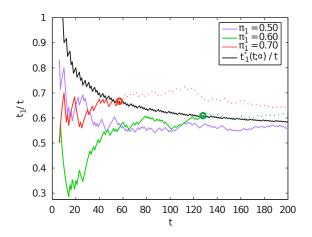
When $\mathcal{L}(c_k|\mathbf{t}) > \alpha$ we stop the querying process for instance \mathbf{x} .



The ensemble prediction should **coincide** with the asymptotic prediction with at least prob. α . The differences in prediction error should be **below** $1 - \alpha$. The values of $\mathcal{L}(c_k|\mathbf{t})$ can be **precomputed**.

4 🗗 🕨

Dynamic Pruning Criterion II

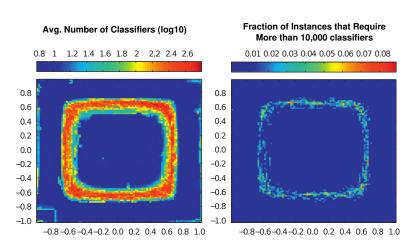


We consider a **binary problem** with $\alpha = 99\%$. $t_1^{\star}(t; \alpha)$ represents the **minimum** number of prediction for class c_1 to stop, for a fixed t.

4 🗗 ▶

(AMA-LIG, UAM) Ensemble Learning 26 / 46

Dynamic Pruning Criterion III



RF ensembles. Most instances require querying a **small number** of classifiers. Others a potentially **infinite number** of classifiers.

(AMA-LIG, UAM) Ensemble Learning 27 / 46

Experiments: Random Forest (size 101 $\alpha = 99\%$) I

Problem	% of test	# Trees	Classification Error in %		
	instances	RF-DP	RF-FS	RF-DP	$RF\infty$
breast	$98.0 {\pm} 0.8$	8.1±0.5	3.1±1.0	2.8 ± 0.9	$2.7{\pm}0.9$
glass*	78.9 ± 4.8	22.9±2.6	18.1±5.5	17.6 ± 5.4	17.6 ± 5.4
heart	86.1 ± 3.1	18.6±2.5	14.4±3.6	13.7 ± 3.6	13.6 ± 3.5
led*	82.7 ± 4.9	23.9±2.9	22.5±2.1	22.2 ± 2.0	22.2 ± 2.0
liver	75.1 ± 4.2	26.7±2.7	24.5±4.2	23.8 ± 4.2	23.4 ± 4.1
new-thyroid*	96.1 ± 2.5	10.6±1.2	$3.3{\pm}2.2$	2.9 ± 2.1	2.9 ± 2.1
pima	83.6 ± 2.3	20.0±1.5	20.6±2.2	$20.3 {\pm} 2.4$	$20.2 {\pm} 2.4$
ringnorm	88.3 ± 1.3	20.1±1.3	4.3±1.0	$3.3 {\pm} 0.9$	$3.2 {\pm} 0.9$
spam	$96.5 {\pm} 0.4$	10.3±0.3	4.2 ± 0.5	$3.7 {\pm} 0.5$	$3.7 {\pm} 0.5$
threenorm	73.8 ± 1.8	27.6±1.2	11.4±1.5	10.6 ± 1.4	10.3 ± 1.4
twonorm	90.2 ± 1.0	18.7±0.7	$2.9 {\pm} 0.5$	1.9 ± 0.5	$1.7 {\pm} 0.5$
vehicle*	77.5 ± 2.7	22.0±1.3	16.4±2.6	16.2 ± 2.6	16.2 ± 2.6
vowel*	86.2 ± 2.1	25.8±1.1	2.7±1.0	2.0 ± 1.0	2.0 ± 1.0
waveform*	$80.5 {\pm} 1.7$	23.8±1.1	11.9±1.3	$11.4 {\pm} 1.2$	11.3 ± 1.3
wine*	97.1 ± 2.0	12.2±1.5	1.9±1.7	1.3 ± 1.4	1.3 ± 1.4

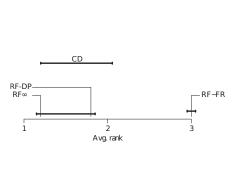
(AMA-LIG, UAM) Ensemble Learning 28 / 46

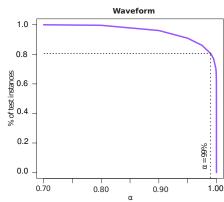
Experiments: Random Forest (size 101 $\alpha = 99\%$) II

Problem	% of disa	of disagreement		
	RF-FS	RF-DP		
breast	$0.7{\pm}0.5$	0.1±0.2		
glass*	1.2 ± 1.5	$0.3{\pm}0.6$		
heart	2.1 ± 1.6	$0.6 {\pm} 0.9$		
led*	1.0 ± 1.3	$0.2{\pm}0.6$		
liver	2.6 ± 1.8	1.2±1.4		
new-thyroid*	1.0 ± 1.3	0.1 ± 0.3		
pima	2.1 ± 1.0	$0.7{\pm}0.5$		
ringnorm	$1.8 {\pm} 0.5$	$0.5{\pm}0.3$		
spam	1.0 ± 0.3	0.1 ± 0.1		
threenorm	$2.4 {\pm} 0.6$	1.3±0.5		
twonorm	1.5 ± 0.4	$0.4{\pm}0.2$		
vehicle*	1.8 ± 0.9	$0.5{\pm}0.5$		
vowel*	$0.9{\pm}0.6$	0.1±0.2		
waveform*	1.8 ± 0.5	$0.7{\pm}0.3$		
wine*	$0.9 {\pm} 1.3$	$0.1 {\pm} 0.3$		

(AMA-LIG, UAM) **Ensemble Learning** 29 / 46

Experiments: Random Forest (size 101 $\alpha = 99\%$) III





The differences with respect to RF-FS are statistically **significant** (Demšar, 2006). Only small benefits are obtained by allowing a lower confidence level α on the estimates.

(AMA-LIG, UAM) Ensemble Learning 30 / 46

Summary

- We have shown how to make Bayesian inference about the infinite ensemble prediction.
- We have derived expressions for the probability that the current majority class coincides with the asymptotic ensemble prediction.
- Computing this probability is costly for multi-class problems and we use an approximation based on a lower bound.
- A large fraction of the instances require on average a small number of classifiers to get enough evidence on the asymptotic ensemble prediction.
- For some instances it is not possible to get **enough evidence** even after querying a very **large number** of classifiers.

4 🗗 →

(AMA-LIG, UAM) Ensemble Learning 31 / 46

Outline

- Parallel Ensembles
 - Detection of Instances that are Difficult to Classify
 - Classification in the Infinite Ensemble Limit
 - Optimal Ensemble Size

Motivation

- The error of the ensemble asymptotically decreases with its size T.
- How to choose the value of T?
 - If T is too large we waste computational resources.
 - If T is too small we loose prediction accuracy.

We consider a practical solution:

Stop including classifiers in the ensemble when it is **unlikely** that adding extra classifiers will **change** the ensemble prediction (Hernández-Lobato, 2009).

- The dynamic pruning methods **relay** on receiving an adequate ensemble.
- They cannot be used to estimate an adequate ensemble size.

(AMA-LIG, UAM) Ensemble Learning 33 / 46

An Adequate Ensemble Size for a Fixed Instance I

If $C = \{c_1, c_2\}$, given **x** we can compute the **probability** that an ensemble of size T gives the **asymptotic** ensemble prediction:

$$\mathcal{P}(\hat{\pmb{y}}^{\textit{T}} = \hat{\pmb{y}}^{\infty} | \textit{T}, \pmb{x}) = \textit{I}_{\max(\pi_1(\pmb{x}), 1 - \pi_1(\pmb{x}))} \left(\lfloor \frac{\textit{T}}{2} \rfloor + 1, \textit{T} - \lfloor \frac{\textit{T}}{2} \rfloor \right) \,,$$

We can define $T^*(\alpha, \mathbf{x})$ as the **minimum ensemble size** whose prediction for \mathbf{x} coincides with \hat{y}^{∞} with at least probability α .

$$\alpha \leq \textit{I}_{\max(\pi_1(\mathbf{x}), 1 - \pi_1(\mathbf{x}))} \left(\lfloor \frac{\textit{T}}{2} \rfloor + 1, \textit{T} - \lfloor \frac{\textit{T}}{2} \rfloor \right)$$

Unfortunately there is no **closed form expression** for $T^*(\alpha, \mathbf{x})$.

(AMA-LIG, UAM) Ensemble Learning 34 / 46

An Adequate Ensemble Size for a Fixed Instance II

For large *T* we can compute an **accurate** Gaussian approximation:

$$\mathcal{P}(\hat{\pmb{y}}^{\mathcal{T}} = \hat{\pmb{y}}^{\infty} | \, \mathcal{T}, \pmb{x}) pprox \Phi\left(rac{\mathit{Tmax}\{\pi_1(\pmb{x}), 1 - \pi_1(\pmb{x})\}}{\sqrt{\mathit{T}\pi_1(\pmb{x})(1 - \pi_1(\pmb{x}))}}
ight) \, ,$$

where $\Phi(\cdot)$ is the c.p.f. of a standard Gaussian distribution.

Given α , we can now **find** $\mathcal{T}^*(\alpha, \mathbf{x})$:

$$\textit{T}^{\star}(\alpha, \mathbf{x}) \approx \frac{\Phi^{-1}(\alpha)^2 \pi_1(\mathbf{x}) (1 - \pi_1(\mathbf{x}))}{(\pi_1(\mathbf{x}) - 1/2)^2}$$

For any
$$\alpha > 50\%$$
, if $\pi_1(\mathbf{x}) \to 1/2$, then $\mathcal{T}^*(\alpha, \mathbf{x}) \to \infty$.

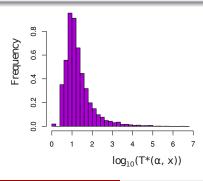
(AMA-LIG, UAM) Ensemble Learning 35 / 46

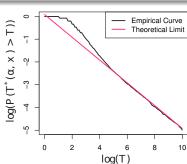
An Adequate Ensemble Size for a Fixed Instance III

If we consider $\pi_1(\mathbf{x})$ as a **random variable**, $\mathcal{T}^{\star}(\alpha, \mathbf{x})$ is also random:

$$\mathcal{P}(\mathcal{T}^{\star}(\alpha, \mathbf{x}) > \mathcal{T}) pprox rac{f(\pi_1(\mathbf{x}) = 1/2)\Phi^{-1}(\alpha)}{\sqrt{\mathcal{T}}}$$
, for large \mathcal{T} .

 $\mathcal{P}(\mathcal{T}^{\star}(\alpha, \mathbf{x}) > \mathcal{T})$ has **universal** heavy-tailed behavior. Only **depends** on the classification problem by $f(\pi_1(\mathbf{x}) = 1/2)$.





An Adequate Ensemble Size in General

We estimate the prob. that \hat{y}^T and \hat{y}^{∞} agree in general:

$$\mathcal{P}(\hat{\mathbf{y}}^{\mathcal{T}} = \hat{\mathbf{y}}^{\infty}) \approx 1 - \frac{\mathbf{f}(\pi_1(\mathbf{x}) = 1/2) \int_{-\infty}^{0} \Phi(\mathbf{z}) d\mathbf{z}}{\sqrt{\mathcal{T}}} \quad \text{with } \mathcal{T} \to \infty \,.$$

Solving for T we find the size $T^*(\alpha)$ of the ensemble that agrees with the infinite ensemble with probability $\alpha = \mathcal{P}(\hat{\mathbf{y}}^T = \hat{\mathbf{y}}^{\infty})$ close to one:

$$T^{\star}(\alpha) pprox \left(rac{\mathit{f}(\pi_1(\mathbf{x}) = 1/2) \int_{-\infty}^{0} \Phi(\mathbf{z}) d\mathbf{z}}{1 - lpha}
ight)^2 \,.$$

Only **depends** on the classification problem by $f(\pi_1(\mathbf{x}) = 1/2)$.

When $\alpha \to 1$, $T^*(\alpha) \to \infty$, as expected.

Practical Implementation

Given α , $T^*(\alpha)$ is obtained as the minimum T such that:

$$\alpha \leq \frac{1}{N} \sum_{i=1}^N I_{\max(\hat{\pi}_1^{(i)}(\mathbf{x}), 1 - \hat{\pi}_1^{(i)}(\mathbf{x}))} \left(\lfloor \frac{T}{2} \rfloor + 1, T - \lfloor \frac{T}{2} \rfloor \right) \,,$$

where $\{(\hat{\pi}_1^{(l)}(\mathbf{x})\}_{i=1}^N$ are **estimated** using OOB, validation or un-labeled test data using an **initial ensemble** of T'=100 classifiers.

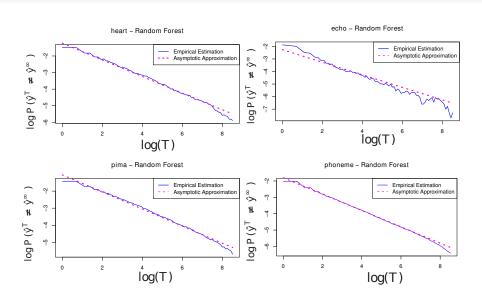
If
$$T^*(\alpha) > T'$$
, we set $T' = \min(T^*(\alpha), 2T')$ and **repeat**.

When $T^*(\alpha) \leq T'$ we stop and return an ensemble of size $T^*(\alpha)$.

Empirical evaluation: 25 problems from the UCI repository. The infinite ensemble is **approx.** by an ensemble of size 10,000. We use **RF** and **bagging** and compare results with the method suggested in (Banfield *et al.*, 2007).

(AMA-LIG, UAM) Ensemble Learning 38 / 46

Universal Behavior Verification



Average Disagreement Rates

Problem	RF-Test	RF-OOB	RF-BAN	Bag-Test	Bag-OOB	Bag-BAN
abalone	1.0 ± 0.2	1.0 ± 0.3	2.2 ± 0.7	1.1±0.2	1.0 ± 0.3	2.1 ± 0.5
australian	1.0 ± 0.6	1.2 ± 0.7	2.3 ± 1.1	1.0±0.6	1.1 ± 0.7	2.3 ± 1.3
breast	0.9 ± 0.6	1.0 ± 0.7	$0.6 {\pm} 0.5$	0.9 ± 0.5	0.9 ± 0.7	0.8 ± 0.6
echo	1.0 ± 1.5	1.1 ± 1.8	2.2 ± 2.4	1.2±1.5	1.1 ± 2.0	2.0 ± 2.6
german	1.1 ± 0.5	1.2 ± 0.6	5.1 ± 1.5	1.1±0.6	1.2 ± 0.6	5.7 ± 2.1
heart	1.2 ± 1.1	1.3 ± 1.2	4.7 ± 3.1	1.3±1.0	1.2 ± 1.1	4.9 ± 3.4
hepatitis	1.5 ± 1.4	1.5 ± 1.8	4.7 ± 3.4	1.3±1.5	1.2 ± 1.8	5.2 ± 3.6
horse	1.2 ± 1.0	1.1 ± 1.1	2.4 ± 1.7	1.1±0.8	1.2 ± 1.1	2.6 ± 2.0
ionosphere	0.9 ± 0.8	1.0 ± 0.8	1.5 ± 1.2	0.9±0.8	1.1 ± 1.0	1.8 ± 1.5
labor	1.8 ± 2.8	1.9 ± 2.9	3.5 ± 4.9	1.4±2.6	1.7 ± 3.7	3.2 ± 4.2
liver	1.5 ± 1.1	1.5 ± 1.2	8.5 ± 3.5	1.3±1.0	1.2 ± 0.9	7.6 ± 4.0
magic	1.0 ± 0.1	1.0 ± 0.1	1.4 ± 0.3	1.0±0.1	1.0 ± 0.1	1.4 ± 0.3
musk	0.9 ± 0.2	$0.8 {\pm} 0.2$	$0.4 {\pm} 0.1$	1.0±0.2	0.9 ± 0.2	$0.4 {\pm} 0.2$
phoneme	1.0 ± 0.2	1.0 ± 0.2	1.7 ± 0.5	1.0±0.2	1.0 ± 0.3	1.6 ± 0.4
pima	1.1 ± 0.7	1.0 ± 0.7	5.2 ± 2.1	1.3±0.6	1.2 ± 0.7	5.2 ± 2.2
ringnorm	1.1 ± 0.3	1.2 ± 0.5	2.8 ± 0.7	1.1±0.3	1.2 ± 0.4	3.3 ± 1.2
spam	1.0 ± 0.3	$0.9 {\pm} 0.3$	0.8 ± 0.3	1.0±0.3	1.0 ± 0.3	0.8 ± 0.3
sonar	1.4 ± 1.2	1.9 ± 1.7	8.1 ± 3.9	1.3±1.4	1.4 ± 1.6	7.0 ± 4.1
tic-tac-toe	$0.9 {\pm} 0.5$	$0.8 {\pm} 0.5$	1.3 ± 0.8	0.9 ± 0.5	$0.8 {\pm} 0.6$	$0.6 {\pm} 0.5$
votes	$0.8 {\pm} 0.8$	$0.8 {\pm} 0.9$	0.7 ± 0.9	1.1±0.8	1.0 ± 1.0	1.0 ± 0.8
whitewine	1.0 ± 0.3	1.0 ± 0.3	2.6 ± 0.7	1.1±0.2	1.0 ± 0.3	2.6 ± 0.6

(AMA-LIG, UAM) **Ensemble Learning** 40 / 46

Median of the Ensemble Size

Problem	# Tree RF-Test	# Tree RF-OOB	# Tree RF-BAN
abalone	391 (318, 474)	397 (363, 442)	92 (66, 120)
australian	257 (192, 427)	238 (189, 318)	58 (43, 78)
breast	19 (15, 34)	23 (17, 28)	57 (36, 76)
echo	57 (24, 131)	88 (62, 117)	35 (18, 46)
german	1570 (1216, 2280)	1616 (1422, 2130)	78 (54, 102)
heart	529 (320, 1079)	618 (404, 1088)	47 (32, 74)
hepatitis	313 (178, 767)	532 (288, 768)	30 (20, 61)
horse	191 (126, 350)	241 (164, 368)	73 (49, 110)
ionosphere	66 (39, 100)	71 (53, 96)	41 (29, 61)
labor	64 (37, 117)	78 (53, 175)	21 (14, 37)
liver	2224 (1312, 4062)	2440 (1526, 3631)	54 (33, 81)
magic	247 (226, 276)	257 (243, 270)	144 (109, 175)
musk	17 (15, 19)	17 (17, 19)	84 (66, 107)
phoneme	246 (206, 287)	267 (233, 297)	96 (76, 122)
pima	1194 (798, 1904)	1258 (1000, 1598)	56 (36, 89)
ringnorm	563 (429, 703)	443 (346, 638)	83 (64, 111)
sonar	1975 (954, 3877)	2070 (1198, 3146)	58 (37, 85)
spam	63 (53, 72)	64 (58, 73)	90 (70, 114)
tic-tac-toe	143 (97, 195)	185 (148, 216)	116 (86, 141)
votes	20 (13, 36)	29 (19, 41)	44 (30, 61)
whitewine	714 (570, 842)	716 (644, 788)	100 (78, 127)

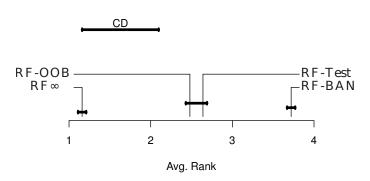
(AMA-LIG, UAM) **Ensemble Learning** 41 / 46

Average Test Error

Problem	$RF\infty$	RF-Test	RF-OOB	RF-BAN
abalone	16.67±0.68	16.72±0.69	16.73±0.71	16.88 ± 0.73
australian	13.13 ± 1.90	13.08 ± 2.02	13.20 ± 2.06	13.24 ± 1.89
breast	3.20 ± 0.89	$3.55{\pm}1.00$	$3.57{\pm}1.02$	3.40 ± 0.94
echo	9.16 ± 3.41	9.59 ± 3.50	9.20 ± 3.53	9.52 ± 3.50
german	24.16±1.77	24.21±1.65	24.19±1.74	24.45 ± 1.92
heart	17.20 ± 3.42	17.10 ± 3.35	17.22 ± 3.40	17.90 ± 3.63
hepatitis	15.44 ± 4.68	15.63 ± 4.53	15.27 ± 4.56	15.73 ± 5.07
horse	14.07 ± 2.83	14.26 ± 2.90	14.22 ± 2.90	14.67 ± 2.99
ionosphere	6.72 ± 1.97	6.78 ± 1.93	$6.95{\pm}2.03$	7.26 ± 2.16
labor	8.42 ± 5.39	$9.53{\pm}5.43$	8.74 ± 5.90	$9.89{\pm}7.42$
liver	28.16±4.05	28.17±3.86	28.37 ± 3.98	29.37±4.23
magic	12.07 ± 0.35	12.14 ± 0.34	12.13 ± 0.33	12.18 ± 0.36
musk	2.46 ± 0.32	2.78 ± 0.36	2.72 ± 0.34	2.51 ± 0.31
phoneme	9.60 ± 0.72	9.63 ± 0.70	9.63 ± 0.69	$9.77{\pm}0.66$
pima	24.05±2.10	24.07 ± 2.06	24.05 ± 2.00	24.41 ± 2.28
ringnorm	6.17±1.14	6.29 ± 1.09	6.26 ± 1.17	$6.86{\pm}1.15$
sonar	18.30±5.16	18.36 ± 5.28	18.41±5.44	19.38 \pm 5.05
spam	5.00 ± 0.56	$5.08 {\pm} 0.61$	5.03 ± 0.53	5.09 ± 0.53
tic-tac-toe	2.01 ± 0.85	$2.37{\pm}0.88$	$2.23{\pm}0.93$	$2.49{\pm}0.98$
votes	3.82 ± 1.52	4.01 ± 1.52	$4.04{\pm}1.52$	3.93 ± 1.55
whitewine	16.93 ± 0.87	17.01 ± 0.88	16.97 ± 0.91	17.12 ± 0.86

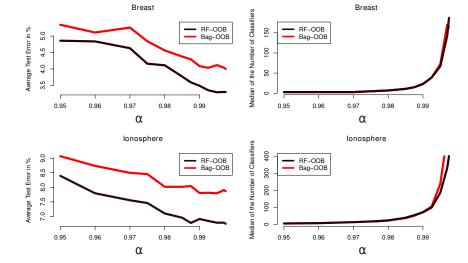
(AMA-LIG, UAM) Ensemble Learning 42 / 46

Average Ranks



Similar results are obtained in **bagging**. However, in this case the differences between BG-Test and BG-BAN are not significant (Demšar, 2006).

Dependence on the Confidence Level α



Summary

- Determining an adequate size for the ensemble requires balancing accuracy and efficiency.
- We estimate the **ensemble size** by requiring that the finite and the infinite ensemble predictions **coincide** with probability α .
- The ensemble size is strongly problem dependent.
- The **fraction** of instances whose predicted class-label differs from the asymptotic prediction is **proportional** to $T^{-1/2}$.
- The ensemble size is **fully determined** by $f(\pi_1(\mathbf{x}) = 1/2)$.
- The method is general and valid for any classification problem and any parallel ensemble.

(AMA-LIG, UAM) Ensemble Learning 45 / 46

References

- Hernández-Lobato, D.; Martínez-Muñoz, G. & Suárez, A. On the Independence of the Individual Predictions in Parallel Randomized Ensembles, ESANN 2012.
- Hernández-Lobato, D.; Martńez-Muñoz, G. & Suárez, A. Inference on the prediction of ensembles of infinite size, Pattern Recognition, 2011, 44, 1426-1434.
- Hernández-Lobato, D. Prediction Based on Averages over Automatically Induced Learners: Ensemble Methods and Bayesian Techniques Computer Science Department, Universidad Autónoma de Madrid, PhD Thesis, 2009.
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets, Journal of Machine Learning Research, MIT Press, 2006. 7, 1-30.
- Freund, Y.; Seung, H. S.; Shamir, E. & Tishby, N. Selective Sampling Using the Query by Committee Algorithm, Machine Learning, Kluwer Academic Publishers, 1997, 28, 133-168.
- Abe, N. & Mamitsuka, H. Query Learning Strategies Using Boosting and Bagging, ICML 1998.
- Banfield, R. E.; Hall, L. O.; Bowyer, K. W. & Kegelmeyer, W. P., A Comparison of Decision Tree Ensemble Creation Techniques, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Computer Society, 2007, 29, 173-180.

(AMA-LIG, UAM) Ensemble Learning 46 / 46