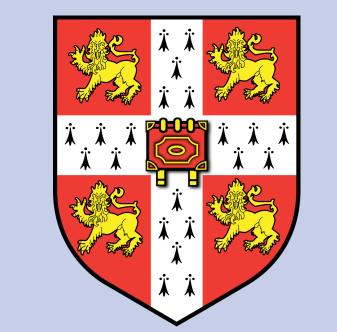


Learning Feature Selection Dependencies in Multi-task Learning

Daniel Hernández-Lobato¹ and José Miguel Hernández-Lobato²

¹Escuela Politécnica Superior, Universidad Autónoma de Madrid, Spain. ²Engineering Department, University of Cambridge, United Kingdom.



1. Introduction

- ► The strong regularization of sparse linear regression models is suitable in the large *d* but small *n* scenario to avoid over-fitting.
- ► The sparsity assumption can be introduced by carrying out Bayesian inference under a sparsity enforcing prior for the model coefficients.
- Introducing dependencies (groups) when determining relevant and irrelevant coefficients can improve the inference process.
- ► Most times these dependencies have to be specified beforehand.

2. Modelling Feature Selection Dependencies

Consider first a single task with some data in the form of n d-dimensional vectors $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\mathsf{T}}$ and targets $\mathbf{y} = (y_1, \dots, y_n)^T$. Assume $\mathbf{y} = \mathbf{X}\mathbf{w} + \epsilon$, with $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, i.e.,

$$p(y|X, w) = \mathcal{N}(y|X, w)$$
.

The prior for w is the horseshoe sparse enforcing prior:

$$p(\mathbf{w}) = \prod_{j=1}^d p(\mathbf{w}_j), \qquad p(\mathbf{w}_j|\tau) = \int \mathcal{N}(\mathbf{0}, \lambda_j^2 \tau) \mathcal{C}^+(\lambda_j) d\lambda_j,$$

where τ controls the **level of sparsity** and $\mathcal{C}^+(\cdot)$ a truncated Cauchy.

We consider the following alternative representation:

$$p(\mathbf{w}, \mathbf{u}, \mathbf{v}) = \left[\prod_{j=1}^{d} \mathcal{N}(\mathbf{w}_{j} | \mathbf{0}, \mathbf{u}_{j}^{2} / \mathbf{v}_{j}^{2}) \right] \mathcal{N}(\mathbf{u} | \mathbf{0}, \rho^{2} \mathbf{C}) \mathcal{N}(\mathbf{v} | \mathbf{0}, \gamma^{2} \mathbf{C})$$

where ρ^2 and γ^2 control the level of sparsity and u_i and v_i are latent variables related to the **importance of feature** *j*:

- ▶ The larger u_i^2 the more relevant the corresponding feature.
- ▶ The smaller v_i^2 the more irrelevant the corresponding feature.

C is a correlation matrix that introduces dependencies in the feature selection process. If C = I and u and v are marginalized, the original horseshoe prior is obtained.

The form of **C** is constrained to depend on $m \ll d$ parameters only: $C = \Delta M \Delta$, $M = D + PP^T$, $\Delta = diag(1/\sqrt{M_{11}}, \dots, 1/\sqrt{M_{dd}})$, where **P** is an arbitrary matrix of size $d \times m$ which determines **C**.

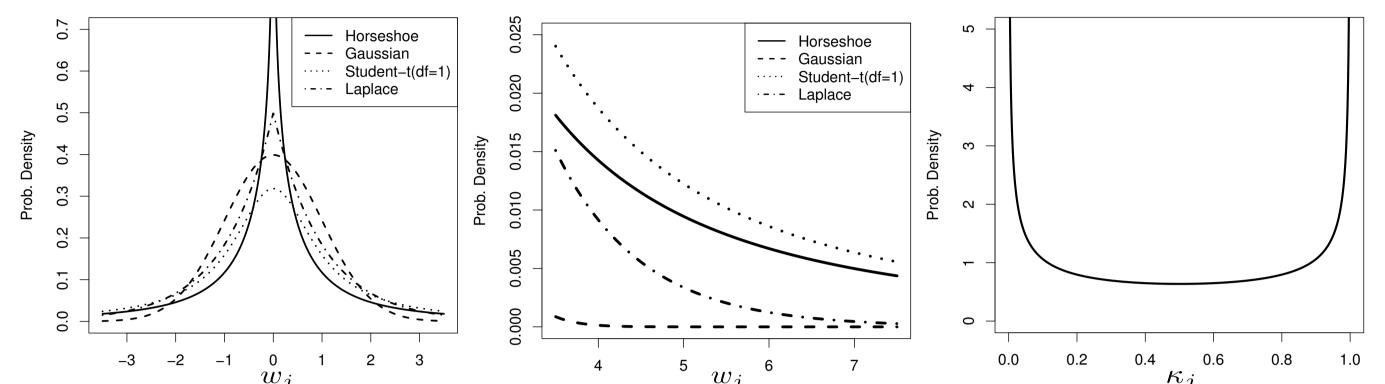
The joint posterior for the latent variables z = (w, u, v)

$$p(z|y,X) = \frac{p(y|X,w)p(w,u,v)}{p(y)},$$

is **intractable** and we have to resort to approximate inference.

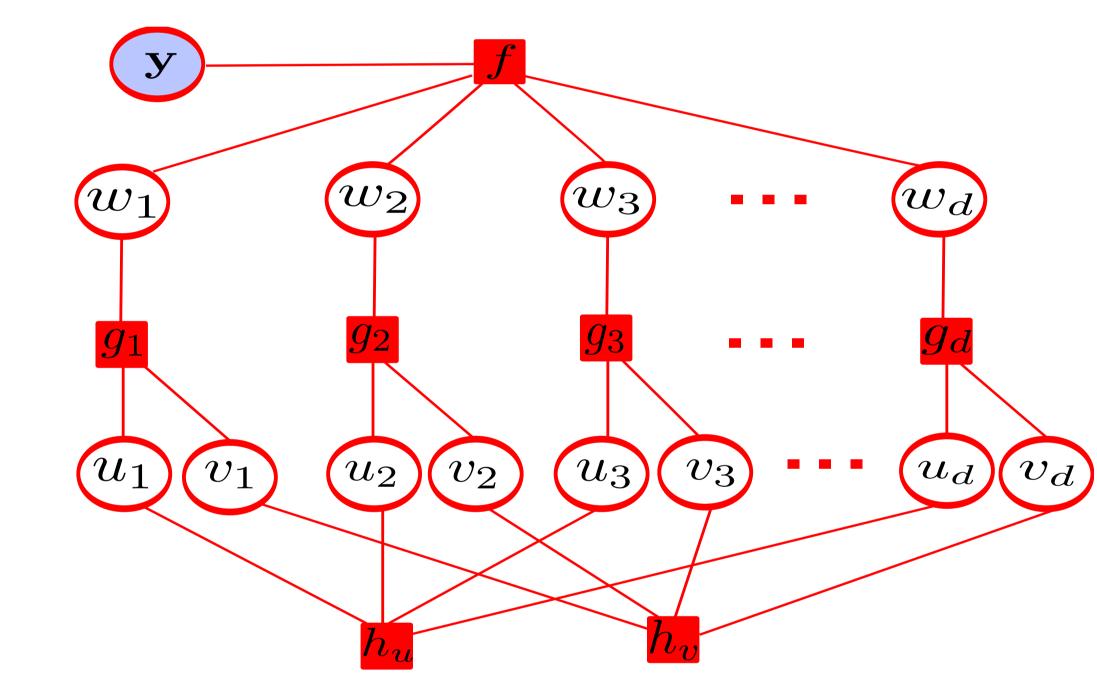
3. Horseshoe Prior Distribution

Assume $\tau = \sigma^2 = 1$ and X = I. Define $\kappa_j = 1/(1 + \lambda_i^2)$. Then, the posterior mean of \mathbf{w}_i is $(1 - \kappa_i)\mathbf{y}_i$, where κ_i is a shrinkage coefficient. If $\kappa_i = 0$ ($\kappa_i = 1$) there is no shrinkage (total shrinkage).



The prior distribution for κ_i tends to infinity both at **0** and **1**.

4. Factor Graph of the Probabilistic Model



 $f(\cdot)$ corresponds to $\mathcal{N}(y|\mathbf{X}\mathbf{w},\sigma^2\mathbf{I})$, each $g_j(\cdot)$ to $\mathcal{N}(w_j|\mathbf{0},u_j^2/v_j^2)$, $h_u(\cdot)$ and $h_v(\cdot)$ to $\mathcal{N}(\mathbf{u}|\mathbf{0}, \rho^2\mathbf{C})$ and $\mathcal{N}(\mathbf{v}|\mathbf{0}, \gamma^2\mathbf{C})$, respectively.

5. Approximate Inference and Multi-task Extension

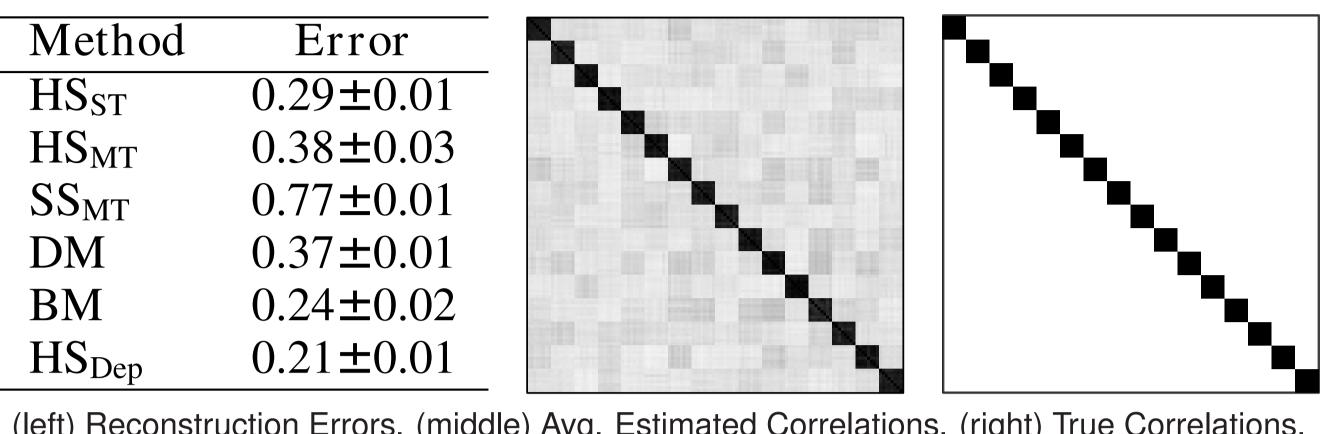
- ► Approximate inference is implemented by expectation propagation.
- ightharpoonup Approximates each non-Gaussian factor g_i by a Gaussian factor \tilde{g}_i .
- **EP** provides an estimate of the marginal likelihood $p(y|\sigma^2, \rho^2, \gamma^2, C)$.
- ▶ This estimate is **maximized** with respect to **C** using gradient ascent.

The EP updates cannot be computed in closed form but can be evaluated using one-dimensional quadrature. The cost is $\mathcal{O}(n^2d)$.

- A multi-task extension is obtained by sharing **C** across learning tasks.
- ▶ The K tasks may have different relevant attributes or coefficients.
- ▶ The **EP** estimate of $\prod_{k=1}^{K} p(y_k | \sigma_k^2, \rho_k^2, \gamma_k^2, C)$ is maximized to find **C**.

6. Reconstruction of Sparse Signals

K = 64 signals are generated using a particular sparsity pattern. They are then reconstructed from a set of Gaussian measurements.



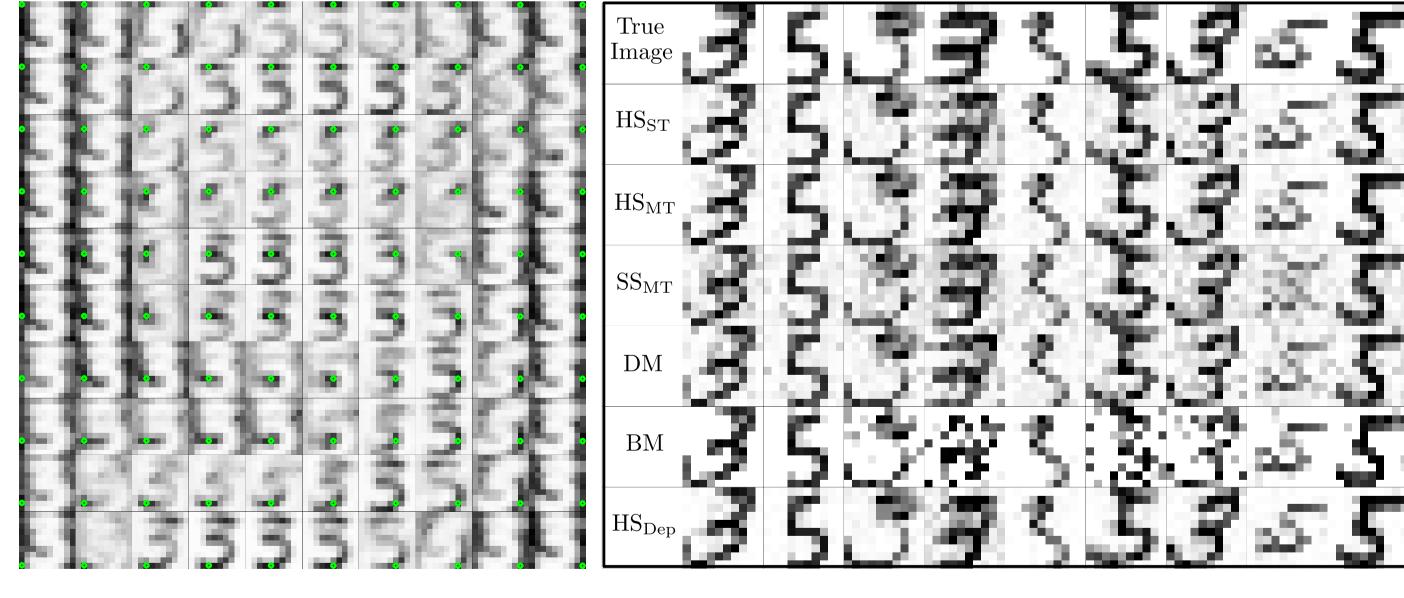
(left) Reconstruction Errors. (middle) Avg. Estimated Correlations. (right) True Correlations.



7. Reconstruction of Images of Hand-written Digits

K = 100 images corresponding to the digits 5 and 3 from the MNIST dataset are reconstructed from a set of Gaussian measurements.

	HS _{ST}	HS _{MT}	SS_{MT}	DM	BM	HS _{Dep}
Error	0.36 ± 0.02	0.25 ± 0.02	0.39 ± 0.01	0.37 ± 0.01	0.52 ± 0.03	0.20 ± 0.01



8. Conclusions

- ▶ Dependencies in the feature selection process can improve the induction process of the model coefficients in sparse linear models.
- ▶ Dependencies can be learnt from the training data in a multi-task setting where the tasks share a common dependency structure.
- The horseshoe prior can be **easily adapted** for this purpose and approximate inference can be efficiently carried out using EP.